Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment \#7

Multiple Choice

Identify the choice that best completes the statement or answers the question.
___ 1. The graph of $f(x)$ is shown in the figure below. Which of the following could be the graph of $f^{\prime \prime}(x)$?

a.

d.

b.

c.

e.

2. To apply either the MeanValue Theorem or Rolle's Theorem to a function f, certain requirements regarding the continuity and differentiability of the function must be met. Which of the following states the requirements correctly?
a. $\quad f$ is continuous on (a, b) and differentiable on (a, b)
b. f is continuous on (a, b) and differentiable on $[\mathrm{a}, \mathrm{b}]$
c. f is continuous on (a, b) and differentiable on $[\mathrm{a}, \mathrm{b}$)
d. f is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b)
e. f is continuous on [a, b] and differentiable on [a, b]
3.

Based on the graph show above, which of the following is NOT true?
a. f is continuous at $x=0$
b. $\quad \lim f(x)=0$

$$
x \rightarrow 0
$$

c. $\quad \lim f(x)=3$

$$
x \rightarrow \infty
$$

d. $f^{\prime}(x)<0$ for $x<0$
e. f is differentiable at $x=0$.
4. Let f be a continuous function on $[-4,12]$. If $f(-4)=-2$ and $f(12)=6$, then the mean value theorem guarantees that
a. $\quad f(4)=2$
b. $\quad f^{\prime}(4)=\frac{1}{2}$
c. $f^{\prime}(c)=\frac{1}{2} \quad$ for at least one c between -4 and 12
d. $\quad f(c)=0$ for at least one c between -4 and 12
e. $f(4)=0$
\qquad 5. Let f be a differentiable function over $[0,10]$ such that $f(0)=0$ and $f(10)=3$. If there are exactly two solutions to $f(x)=4$ over $(0,10)$ then which of these statements must be true?
a. $\quad f^{\prime}(c)=0$ for some c on $(0,10)$
b. f has a local maximum at $\mathrm{x}=5$
c. $f^{\prime \prime}(c)=0$ for some c on $(0,10)$
d. 0 is the absolute minimum of f
e. f is strictly monotonic
6. Suppose a particle moves on a straight line with a position function s such that its position at any time t is given by $s(t)=3 t^{3}-11 t^{2}+8 t$. In what interval of time is the particle moving to the left?
a. $(-\infty, 0)$
b. $(0,1)$
c. $\left(1, \frac{8}{3}\right)$
d. $\left(\frac{4}{9}, 2\right)$
e. $(2, \infty)$
7. A particle moves along a line so that its position at any time $t \geq 0$ is given by $s(t)=2+7 t-t^{2}$.

When is the particle at rest?
a. $t=1$
b. $t=2$
c. $t=7 / 2$
d. $t=4$
e. $t=5$
8. Consider the function $f(x)=\frac{(x-a)(x-b)}{(x-c)^{2}}$. The equations of the asymptotes are
a. $\quad x=a, x=b, x=c$
b. $x=a, x=b$
c. $x=a, y=a b$
d. $x=c, y=1$
e. $x=c$ only
9. The Mean Value Theorem guarantees the existence of a special point on the graph of $y=\sqrt{x}$ between $(1,1)$ and $(9,3)$. What are the coordinates of this point?
a. $(1,1)$
b. $(2, \sqrt{2})$
c. $(3, \sqrt{3})$
d. $(4,2)$
e. none of the above
10. The graph of the function f is given below.

Which of these graphs could be the derivative of f ?
a.

d.

b.

e.

c.

