Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment \#4

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. If $f(x)=3 x+2$ then the graph of the derivative of $f(x)$ is
a. a horizontal line
b. a line with a positive slope
c. a line with a negative slope
d. not a line
e. a vertical line
2. For $x \geq 0$, the horizontal line $y=2$ is an asymptote for the graph of the function f. Which of the following statements must be true?
a. $\quad f(0)=2$
b. $\quad f(x) \neq 2$ for all $x \geq 0$
c. $f(2)$ is undefined
d. $\quad \lim f(x)=\infty$
$x \rightarrow 2$
e. $\quad \lim f(x)=2$
$x \rightarrow \infty$
3. GIven the function $f(x)= \begin{cases}\sin 2 x & x \leq \pi \\ 2 x+k & x>\pi\end{cases}$
what value of k will make this piecewise function continuous?
a. -2π
b. $-\pi$
c. 0
d. π
e. 2π
4.

Graph of f
The graph of a function f is shown above. Which of the following could be the graph of the derivative of f ?
a.

c.

b.

d.

5.

Graph of f

The graph of a function f is shown above. At which values of x is f continuous, but not differentiable?
a. a
b. b
c. c
d. d
e. e
6. If the line tangent to the graph of the function f at the point $(1,7)$ passes through the point $(-2,-2)$, then $f^{\prime}(1)$ is
a. -5
b. 1
c. 3
d. 7
e. undefined
7. Let f be the function defined by $f(x)=4 x^{3}-5 x+3$. Which of the following is an equation of the line tangent to the graph of f at the point where $x=-1$?
a. $y=7 x-3$
b. $y=7 x+7$
c. $y=7 x+11$
d. $y=-5 x-1$
e. $y=-5 x-5$
8.

$$
f(x)= \begin{cases}x+2 & x \leq 3 \\ 4 x-7 & x>3\end{cases}
$$

Let f be the function given above. Which of the following statements are true about f ?
I. $\lim f(x)$ exists. $x \rightarrow 3$
II. f is continuous at $x=3$
III. f is differentiable at $x=3$
a. None
b. I only
c. II only
d. I and II only
e. I, II, and III
9. If $p(x)$ is a continuous function on the closed interval [1,3], with $p(1) \leq k \leq p(3)$ and c is in the closed interval $[1,3]$, then which of the following statements must be true?
a. $\quad p(c)=\frac{p(3)+p(1)}{2}$
b. $\quad p(c)=\frac{p(3)-p(1)}{2}$
c. There is at least one value c such that $p(c)=k$.
d. There is only one value c such that $p(c)=k$
e. $c=2$
10.

The graph of a function f is shown above. If $\lim f(x)$ exists and f is not continuous $x \rightarrow b$
at b, then $b=$
a. -1
b. 0
c. 1
d. 2
e. 3

