Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment #3

Multiple Choice

Identify the choice that best completes the statement or answers the question.

 1. Find: $\lim_{x \to \infty} \frac{\sin x}{x}$ if it exists.						
	$x \rightarrow \frac{\pi}{2}$					
	a. 0 b. 1 c. $\frac{2}{\pi}$ d. $\frac{\pi}{2}$ e. DNE					
 2.	Given: $f(x) = \begin{cases} x^2 + 1 & x < 2 \\ 4 & x > 2 \end{cases}$ Find: $\lim_{x \to 2^-} f(x)$					
	 a. 0 b. 2 c. 4 d. 5 e. DNE 					
 _ 3. The graph of the derivative of $f(x) = x^2$ is						
	 a. a horizontal line b. a vertical line c. a line with a positive slope 					

- d. a line with a negative slope
- e. a line with a y-intercept of 2

4. Find:
$$\lim_{x \to \frac{\pi}{3}} \frac{1 - \cos x}{x}$$
 if it exists.
a. $\frac{\pi}{3}$
b. $\frac{3}{\pi}$
c. $\frac{3}{2\pi}$
d. $\frac{3(1 - \sqrt{3})}{2\pi}$
e. 0

5.

x	1	2	3	4
f(x)	4	2	3	1
g(x)	2	3	1	4

Selected values for continuous functions f(x) and g(x) are given in the table above.

Find:
$$\lim_{x \to 3} \frac{f(g(x))}{g(f(x))}$$

a.
$$\frac{1}{4}$$

b.
$$\frac{1}{3}$$

c.
$$1$$

d.
$$3$$

e.
$$4$$

6. Which of the following graphs shows a function that is continuous for all real numbers?

a.

d.

---- 7. Find:
$$\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3}$$
 if it exists.
a. $-\infty$
b. $-\frac{1}{3}$
c. $-\frac{1}{9}$
d. 0
e. $\frac{1}{3}$

8. Which of the following statements is true about the figure?

- a. $\lim_{x \to 3} f(x)$ exists
- b. $\lim_{x \to -2} f(x)$ exists
- c. $\lim_{x \to 3} f(x) = f(3)$

d.
$$\lim_{x \to -2} f(x) = f(-2)$$

e. $\frac{f(3) - f(-2)}{3 - (-2)} = f'(c)$

The function g(x) is shown in the graph above and is of the form $g(x) = \frac{x^2 + a}{bx^2 - 3}$. Which of the following could be the values of the constants *a* and *b*?

a. a = -2, b = -1b. a = -2, b = -3c. a = -4, b = 3d. a = -4, b = -3e. a = 4, b = 3 10. Consider the following function f(x):

On what interval(s) is the slope of the tangent of the graph of f(x) positive?

a. $(-2, 1) \cup (3, \infty)$ b. (-2, 1)c. $(-\infty, -2) \cup (1, 3)$ d. $(3, \infty)$ e. $(-\infty, 1)$