Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment #27

Multiple Choice

Identify the choice that best completes the statement or answers the question.

$$e^{10x}$$
_____ 1. Find $G'(x)$ if $G(x) = \int_{0}^{10x} \ln(t+5) dt$.

a.
$$G'(x) = e^{10x} \ln \left(e^{10x} + 5 \right)$$

b.
$$G'(x) = 10e^{10x} \ln \left(e^{10x} + 5 \right)$$

$$c. \quad G'(x) = \ln\left(e^{10x} + 5\right)$$

d.
$$G'(x) = 10e^{10x+5}$$

e.
$$G'(x) = e^{10x} + 5$$

____ 2. Solve the differential equation.

$$y' = \frac{-x}{y}$$

a.
$$y^2 = x^2 + C$$

b.
$$y^2 = -x^3 + C$$

$$c. \quad 2\ln y = x^3 + C$$

d.
$$y^2 = -x^2 + C$$

$$e. \quad 2\ln y = -x^2 + C$$

3. A rectangle is bounded by the x- and y-axes and the graph of $y = \frac{(5-x)}{2}$ (see figure). What length and width should the rectangle have so that its area is a maximum?

a.
$$x = 5$$
; $y = 3$

b.
$$x = 2.5$$
; $y = 1.25$

c.
$$x = 3$$
; $y = 5$

d.
$$x = 1.25$$
; $y = 2.5$

e.
$$x = 2.5$$
; $y = 3$

4. Find all points of inflection on the graph of the function $f(x) = -5e^{-5x^2}$.

a.
$$\left(\frac{1}{\sqrt{10}}, -\frac{5}{\sqrt{e}}\right), \left(-\frac{1}{\sqrt{10}}, -\frac{5}{\sqrt{e}}\right)$$

b.
$$\left(\frac{1}{\sqrt{5}}, -\frac{5}{e}\right), \left(-\frac{1}{\sqrt{5}}, -\frac{5}{e}\right)$$

c.
$$\left(\frac{1}{\sqrt{5}}, -\frac{5}{e^2}\right), \left(-\frac{1}{\sqrt{5}}, -\frac{5}{e^2}\right)$$

d.
$$\left(\frac{1}{\sqrt{10}}, -\frac{5}{\sqrt{e}}\right)$$

e.
$$\left(\frac{1}{\sqrt{10}}, -\frac{5}{e}\right), \left(-\frac{1}{\sqrt{10}}, -\frac{5}{e}\right)$$

5. Set up and evaluate the definite integral for the area of the surface formed by revolving the graph of $y = 4 - x^2$ about the y-axis. Round your answer to three decimal places.

- 73.401
- 18.088
- 1.635
- 36.177
- 3.271
- 6. Find the function y = f(t) passing through the point (0,19) with the first derivative $\frac{dy}{dt} = \frac{9}{5}y$.

a.
$$y(t) = e^{\frac{9}{5}t} + 19$$

b.
$$y(t) = e^{\frac{9}{5}t^2} + 19$$

c. $y(t) = \frac{9}{5}t^2 + 19$

c.
$$y(t) = \frac{9}{5}t^2 + 19$$

d.
$$y(t) = 19e^{\frac{9}{5}t^2}$$

e. $y(t) = 19e^{\frac{9}{5}t}$

e.
$$y(t) = 19e^{\frac{9}{5}t}$$

7. If the accumulation function F(x) is given by

$$F(x) = \int_{0}^{x} \left(\frac{1}{11}t^2 + 9\right) dt, \text{ evaluate } F(8).$$

a.
$$A = \frac{2888}{33}$$

b.
$$A = \frac{4472}{33}$$

c.
$$A = \frac{809}{33}$$

d.
$$A = \frac{4024}{33}$$

e.
$$A = \frac{559}{33}$$

8. Use integration to find a general solution of the differential equation
$$\frac{dy}{dx} = \frac{3x}{13 + x^2}$$
.

a.
$$y = \frac{3}{2x} \ln \left(\left| 16 + x^2 \right| \right) + C$$

b.
$$y = \frac{6}{x^2} \ln \left(\left| 13 + x^2 \right| \right) + C$$

c.
$$y = \frac{3}{2} \ln \left(\left| 13 + x^2 \right| \right) + C$$

d.
$$y = \frac{3x^2}{\ln(|13 + x^2|)} + C$$

e.
$$y = \frac{3}{x \ln\left(\left|13 + x^2\right|\right)} + C$$

9. Use the shell method to set up and evaluate the integral $y = \sqrt{x}$ that gives the volume of the solid generated by revolving the plane region about the *y*-axis.

- a. $\frac{64\pi}{7}$
- b. $\frac{64\pi}{5}$
- c. $\frac{32\pi}{5}$
- d. $\frac{128\pi}{5}$
- e. $\frac{128\pi}{7}$

- 10. A conical tank (with vertex down) is 16 feet across the top and 14 feet deep. If water is flowing into the tank at a rate of 18 cubic feet per minute, find the rate of change of the depth of the water when the water is 6 feet deep.
 - a. $\frac{49}{128\pi}$ ft/min
 - b. $\frac{49}{32\pi}$ ft/min
 - c. $\frac{147}{64\pi}$ ft/min
 - d. $\frac{7}{64\pi}$ ft/min
 - e. $\frac{21}{128\pi}$ ft/min