Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment #22

Multiple Choice

Identify the choice that best completes the statement or answers the question.

____ 1. Find the indefinite integral $\int 2 \sec y (\tan y - \sec y) dy$.

a.
$$2 \sec y \tan y + C$$

b.
$$2 \sec y - 2 \tan y + C$$

c.
$$2 \sec y + \tan y + C$$

d.
$$2 + 2 \sec v + C$$

e.
$$2 \sec y \tan y - 2 \sec y + C$$

2. Solve the differential equation.

$$\frac{dP}{dx} = 15x^4 - 5, \quad P(-2) = 8$$

a.
$$P(x) = 3x^5 + 5x$$

b.
$$P(x) = 3x^5 + 94$$

c.
$$P(x) = 3x^5 - 5x + 94$$

d.
$$P(x) = 60x^3 - 5x + 94$$

e.
$$P(x) = 3x^5 + C$$

_ 3. Use left endpoints and 10 rectangles to find the approximation of the area of the region

between the graph of the function $4x^2 - x - 1$ and the x-axis over the interval [4,14]. Round your answer to the nearest integer.

- a. 2925
- b. 3325
- c. 3000
- d. 3250
- e. 3125
- 4. Write the limit $\lim_{|\Delta x| \to 0} \sum_{i=1}^{\infty} 4c_i (7-c_i)^2 \Delta x_i$, as a definite integral on the interval [0,8]

where c_i is any point in the i^{th} subinterval.

- a. $\int 4x(7-x)^8 dx$
- b. $\int_{8}^{0} 4x^2 (7-x)^8 dx$
- c. $\int 4c_i \left(7 c_i\right)^2 \Delta x_i$
- d. $\int_{0}^{8} 4x(7-x)^{2} dx$
- e. $\int_{0}^{c_i} 4c_i (7 c_i)^2 \Delta x_i$

____ 5.
$$\frac{d}{dx} \int_{2}^{x} \sqrt{1+t^2} dt =$$

a.
$$\frac{x}{\sqrt{1+x^2}}$$

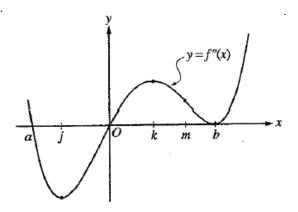
b.
$$\sqrt{1+x^2} - 5$$

c. $\sqrt{1+x^2}$

c.
$$\sqrt{1+x^2}$$

$$d. \quad \frac{x}{\sqrt{1+x^2}} - \frac{1}{\sqrt{5}}$$

e.
$$\frac{1}{2\sqrt{1+x^2}} - \frac{1}{2\sqrt{5}}$$


- 6. What are the values of x for which the function f defined by $f(x) = (x^2 3)e^{-x}$ is decreasing?
 - There are no such value of x.

b.
$$x < -1$$
 and $x > 3$

c.
$$-3 < x < 1$$

c.
$$-3 < x < 1$$

d. $-1 < x < 3$

7.

The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$. The graph of f'' is shown above. For what values of x does the graph of f have a point of inflection?

- a. 0 and a only
- b. **0** and *m* only
- c. b and j only
- d. 0, *a*, and *b*
- e. b, j, and k

8. The
$$\lim_{x \to 0} \frac{\tan 3(x+h) - \tan 3x}{h}$$
 is

- a. 0
- b. $3 \sec^2(3x)$
- c. $\sec^2(3x)$
- d. $3\cos(3x)$
- e. nonexistent

9. Let R represent the region enclosed by the graphs y = x and $y = x^2$ over the interval [0, 1]. What is the volume of the solid that results when R is revolved about the line y = 2?

a.
$$\pi \int_{0}^{1} \left[\left(2 - x^{2} \right)^{2} - \left(2 - x \right)^{2} \right] dx$$

b.
$$\pi \int_{0}^{1} \left[(2-x)^{2} - \left(2-x^{2}\right)^{2} \right] dx$$

c.
$$\pi \int_{0}^{1} \left[\left(\sqrt{y} \right)^{2} - \left(y \right)^{2} \right] dy$$

d.
$$\pi \int_{0}^{1} \left[\left(y \right)^{2} - \left(\sqrt{y} \right)^{2} \right] dy$$

e.
$$\pi \int_{0}^{2} \left[(2-y)^{2} - (2-\sqrt{y})^{2} \right] dy$$

- _ 10. A point moves on the x-axis in such a way that its velocity at time t (t > 0) is given by $v = \frac{\ln t}{t}$. At what value of t does v attain its maximum?
 - a. 1
 - h e²
 - c *e*
 - 3
 - d. e
 - e. There is no maximum value of v.