Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment #20

Multiple Choice

Identify the choice that best completes the statement or answers the question.

____ 1. Determine whether Rolle's Theorem can be applied to the function $f(x) = x^2 - 2x - 3$ on the closed interval [-1,3].

If Rolle's Theorem can be applied, find all values of c in the open interval (-1,3) such that f'(c) = 0.

- a. Rolle's Theorem applies; c = 1
- b. Rolle's Theorem applies; c = 2
- c. Rolle's Theorem applies; c = 0
- d. Rolle's Theorem applies; c = -1
- e. Rolle's Theorem does not apply
- ____ 2. The height of an object t seconds after it is dropped from a height of 550 meters is $s(t) = -4.9t^2 + 550$.

Find the average velocity of the object during the first 7 seconds.

- a. 34.30 m/sec
- b. -34.30 m/sec
- c. -49.00 m/sec
- d. 49 m/sec
- e. -16.00 m/sec
- ____ 3. Find an equation of the tangent line to the graph of $y = e^{3x}$ at the point (0, 1).
 - a. y = 3x + 1
 - b. y = x + 1
 - c. y = 3x 1
 - d. $y = \ln(3)x + 1$
 - e. y = 4x + 1

- - 4. The graph of the function $f(x) = 16 x^2$ is given below.

Which of the following definite integrals yields the area of the shaded region?

a.
$$\int_{0}^{16} \left(16 - x^2\right) dx$$

d.
$$\int_{-16}^{16} \left(16 - x^2\right) dx$$

b.
$$\int_{-4}^{0} \left(16 - x^2\right) dx$$

e.
$$\int_{-4}^{4} (16 - x^2) dx$$

$$c. \int_{0}^{4} \left(16 - x^2\right) dx$$

5. Which of the following is a solution of the differential equation $xy' - 4y = x^5 e^x$?

$$a. \quad y = 4x^5 e^{2x}$$

b.
$$y = 6e^{2x} - 7\sin 2x$$

c.
$$y = x^4 e^x$$

d.
$$y = 5e^{-2x}$$

e.
$$v = \ln x$$

a.

d.

e.

b.

y(x) -2.53

c.

7. Set up the definite integral that gives the area of the region bounded by the graph of $y_1 = x^2 + 2x + 1$ and $y_2 = 2x + 5$.

- a. $\int_{-2}^{2} \left(-x^2 + 4\right) dx$
- b. $\int_{-2}^{2} \left(x^2 + 2x + 1\right) dx$
- c. $\int_{-2}^{2} \left(-x^2 + 4\right) dy$
- $d. \int_{-2}^{2} \left(x^2 + 4x + 6\right) dy$
- e. $\int_{-2}^{2} \left(x^2 + 4x + 6\right) dx$

8. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by y = 8 and $y = 16 - \frac{x^2}{16}$ about the x-axis.

a.
$$V = \pi \int_{-16}^{16} \left(16 - \frac{x^2}{16} \right)^2 - 64 dx = \frac{7168}{15} \sqrt{2} \pi$$

b.
$$V = \pi \int_{-8\sqrt{2}}^{8\sqrt{2}} \left(\left(16 - \frac{x^2}{16} \right)^2 - 64 \right) dx = \frac{14336}{15} \sqrt{2} \pi$$

c.
$$V = \pi \int_{-16}^{16} \left(16 - \frac{x^2}{16} \right)^2 - 64 dx = \frac{28672}{15} \sqrt{2} \pi$$

d.
$$V = \pi \int_{-8\sqrt{2}}^{8\sqrt{2}} \left(\left(16 - \frac{x^2}{16} \right)^2 - 64 \right) dx = \frac{28672}{15} \sqrt{2} \pi$$

e.
$$V = \pi \int_{-16}^{16} \left(16 - \frac{x^2}{16} \right)^2 - 64 dx = \frac{14336}{15} \sqrt{2} \pi$$

$$\int x \ln(x-8) \ dx$$

a.
$$\left(\frac{x^2 - 64}{2}\right) \ln(x - 8) - \frac{x^2 + 16x}{4} + C$$

b.
$$\left(\frac{x^2 - 64}{2}\right) \ln(x - 8) + \frac{x^2 + 8x}{4} + C$$

c.
$$\left(\frac{x^2 - 64}{2}\right) \ln(x - 8) + \frac{x^2 + 16x}{4} + C$$

d.
$$\left(\frac{x^2 - 64}{2}\right) \ln(x - 8) - \frac{x^2 + 16x}{2} + C$$

e.
$$\left(\frac{x^2+64}{2}\right)\ln(x-8) - \frac{x^2-8x}{4} + C$$

____ 10. Evaluate the limit $\lim_{x \to 0^+} \frac{3(e^x - 1 - x)}{10x^3}$ using L'Hopital's Rule if necessary.

a.
$$\frac{1}{20}$$

e.
$$\frac{3}{10}$$