Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment #2

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Use the graph to find a $\delta > 0$ such that for all $x, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon$

- $---- 2. \text{ Given } \lim_{x \to 4} -5x + 10 \text{ and } \varepsilon = .01, \text{ find the greatest value for } \delta > 0 \text{ such that}$ $0 < |x a| < \delta \text{ the inequality } |f(x) L| < \varepsilon \text{ holds.}$
 - a. 0.008
 - b. 0.004
 - c. -0.0025
 - d. 0.002
 - ____ 3. Evaluate the limit: $\lim_{x \to 9} \frac{3 \sqrt{x}}{9 x}$

a.
$$\frac{1}{12}$$

b. $-\frac{1}{3}$
c. -6
d. $\frac{1}{6}$

4. TRUE or FALSE: If $f(x) = \frac{x^2 - 4}{x - 2}$ and g(x) = x + 2 then we can say the functions *f* and *g* are equal.

- a. TRUE
- b. FALSE
- 5. Let f be the function given by $f(x) = \frac{x+4}{(x-1)(x+8)}$. For which of the following values of x is f not continuous?
 - a. -4 and 8 only
 b. -4, 1, and -8
 c. 1 and -8 only
 d. -4 only

The graph of a function f is shown in the figure above. Which of the following statements is true?

a.
$$f(2) = 2$$

b.
$$f$$
 is continuous at $x = 2$

- c. $\lim_{x \to 2} f(x) = -2$
- d. $\lim_{x \to 2} f(x) = 2$
- e. $\lim_{x \to 2} f(x)$ does not exist

6.

The graph of the function f is shown above. Which of the following statements is false?

- a. $\lim_{x \to 2} f(x)$ exists
- b. $\lim_{x \to 3} f(x)$ exists
- c. $\lim_{x \to 1} f(x)$ exists
- d. The function f is continuous at x = 3

8.

$$f(x) = \begin{cases} k\sqrt{x+1} & 0 \le x \le 3\\ 5-x & 3 < x \le 5 \end{cases}$$

The function f is defined above. For what value of k, if any, is f continuous at x = 3?

- a. 1
- b. 2
- c. 3
- d. No value of k will make f continuous at x = 2.

7.

9. Let f be defined as follows, where $a \neq 0$.

$$f(x) = \begin{cases} \frac{x^2 - a^2}{x - a} & \text{for } x \neq a \\ 0 & \text{for } x = a \end{cases}$$

Which of the following are true about f? I. $\lim f(x)$ exists $x \rightarrow a$ II. f(a) exists III. f(x) is continuous at x = aa. None

- b. I only
- c. II only
- d. I and II only
- e. I, II, and III

 $\begin{cases} f(x) = \frac{3x^2 + x}{2x} & \text{for } x \neq 0 \\ f(0) = k \end{cases}$ and if f is continuous at x = 0, then k = 0

a.
$$\frac{3}{2}$$

b. -1
c. 0
d. 1
e. $\frac{1}{2}$