Calculus Web Assignments

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.
Calculus: Web Assignment \#2

Multiple Choice
Identify the choice that best completes the statement or answers the question.
\qquad 1. Use the graph to find a $\delta>0$ such that for all $x, 0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$

a. $\frac{1}{4}$
b. $\frac{1}{2}$
c. 0.7588
d. -1.84
2. Given $\lim -5 x+10$ and $\varepsilon=.01$, find the greatest value for $\delta>0$ such that $x \rightarrow 4$ $0<|x-a|<\delta$ the inequality $|f(x)-L|<\varepsilon$ holds.
a. 0.008
b. 0.004
c. -0.0025
d. 0.002
-- 3. Evaluate the limit: $\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}$
a. $\frac{1}{12}$
b. $-\frac{1}{3}$
c. -6
d. $\frac{1}{6}$
4. TRUE or FALSE: If $f(x)=\frac{x^{2}-4}{x-2}$ and $g(x)=x+2$ then we can say the functions f and g are equal.
a. TRUE
b. FALSE
5. Let f be the function given by $f(x)=\frac{x+4}{(x-1)(x+8)}$. For which of the following values of x is f not continuous?
a. -4 and 8 only
b. $-4,1$, and -8
c. 1 and -8 only
d. -4 only
6.

The graph of a function f is shown in the figure above. Which of the following statements is true?
a. $f(2)=2$
b. f is continuous at $x=2$
c. $\quad \lim f(x)=-2$
$x \rightarrow 2$
d. $\quad \lim f(x)=2$
$x \rightarrow 2$
e. $\lim f(x)$ does not exist $x \rightarrow 2$
7.

The graph of the function f is shown above. Which of the following statements is false?
a. $\quad \lim f(x)$ exists $x \rightarrow 2$
b. $\quad \lim f(x)$ exists $x \rightarrow 3$
c. $\quad \lim f(x)$ exists
$x \rightarrow 1$
d. The function f is continuous at $x=3$
8.

$$
f(x)= \begin{cases}k \sqrt{x+1} & 0 \leq x \leq 3 \\ 5-x & 3<x \leq 5\end{cases}
$$

The function f is defined above. For what value of k, if any, is f continuous at $x=3$?
a. 1
b. 2
c. 3
d. No value of k will make f continuous at $x=2$.
9. Let f be defined as follows, where $a \neq 0$.

$$
f(x)= \begin{cases}\frac{x^{2}-a^{2}}{x-a} & \text { for } x \neq a \\ 0 & \text { for } x=a\end{cases}
$$

Which of the following are true about f ?
I. $\lim f(x)$ exists
$x \rightarrow a$
II. $f(a)$ exists
III. $f(x)$ is continuous at $x=a$
a. None
b. I only
c. II only
d. I and II only
e. I, II, and III
10. If $\left\{\begin{array}{l}f(x)=\frac{3 x^{2}+x}{2 x} \\ f(0)=k\end{array}\right.$ for $x \neq 0 \quad$ and if f is continuous at $x=0$, then $k=$
a. $\frac{3}{2}$
b. -1
c. 0
d. 1
e. $\frac{1}{2}$

