## **Calculus Web Assignments**

Web Assignments are intended to be completed with a partner. Both partners should individually work each of the problems, followed by a collaborative discussion about the problem.

Both partners are required to participate in the "Honor-System" Grading of the Web Assignment.

Calculus: Web Assignment #18

## Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Read the following four statements and choose the correct answer below. If f is continuous on the interval [a, b], then:

(i)  $\int_{a}^{b} f(x) dx$  is the area bounded by the graph of *f*, the *x*-axis and the lines x = a and x = b(ii)  $\int_{a}^{b} f(x) dx$  is a number (iii)  $\int_{a}^{b} f(x) dx$  is an antiderivative of f(x)(iv)  $\int_{a}^{b} f(x) dx$  may not exist

- a. (i) and (ii) only
- b. (ii) only
- c. (i) and (iii) only
- d. (iv) only
- 2. Water is pouring out of a pipe at the rate of f(t) gallons/minute. You collect the water that flows from the pipe between t = 2 and t = 4. The amount of water you collect can be represented by:
  - a. the average of f(4) and f(2) times the amount of time that elapsed

b. 
$$(4-2)f(4)$$

- c. f(4) f(2)
- d.  $\int_{2}^{4} f(x) dx$

3. A sprinter practices by running various distances back and forth in a straight line in a gym. Her velocity at *t* seconds is given by the function v(t).

What does  $\int_{0}^{60} |v(t)| dt$  represent?

- a. The sprinter's average velocity in one minute
- b. The total distance the sprinter ran in one minute
- c. The sprinter's distance from the starting point after one minute
- d. None of the above

4. True or False. If 
$$\int f(x) dx = \int g(x) dx$$
, then  $f(x) = g(x)$ .

- a. True
- b. False

\_\_\_\_ 5. If *f* is continuous and f(x) < 0 for all *x* ∈ [*a*, *b*], then  $\int_{a}^{b} f(x) dx$ 

- a. must be negative
- b. might be 0
- c. not enough information
- 6. You are traveling with velocity v(t) that varies continuously over the interval [a, b] and your position at time t is given by s(t).

Which of the following represent your average velocity for that time interval:

(I) 
$$\frac{\int_{a}^{b} v(t)dt}{b-a}$$
  
(II) 
$$\frac{s(b) - s(a)}{b-a}$$
  
(III) - ( ) for at least one hat

(III) v(c) for at least one c between a and b

- a. I, II, and III
- b. I only
- c. I and II only

## 7. True or False.

For 
$$f(x) = |x|$$
 on the interval  $\left[-\frac{1}{2}, 2\right]$ , you can find a point  $c$  in  $\left(-\frac{1}{2}, 2\right)$  such that:  

$$f'(c) = \frac{f(2) - f\left(-\frac{1}{2}\right)}{2 - \left(-\frac{1}{2}\right)}$$

a. True

b. False

8. The limit 
$$\lim_{x \to \infty} \left[ x e^{1/x} - x \right]$$

- a. Is 1 because  $xe^{1/x}$  grows faster than x.
- b. Converges to 0.
- c. Does not exist because  $\infty \infty$  is not defined.
- d. Converges to 1 .

9. We will use each of the  $x_n$  below as the starting point for Newton's method.

For which of them do you expect Newton's method to work and lead to the root of the function?



- a.  $x_1$  and  $x_2$  only.
- b.  $x_1$ ,  $x_2$  and  $x_3$  only.
- c.  $x_2$  only.
- d. All four

- \_\_\_\_ 10. Newton's method is a cool technique, because:
  - a. It can help us get decimal representations of numbers like  $\sqrt[4]{3}$ ,  $\sqrt[8]{5}$  and  $\sqrt[5]{13}$
  - b. It can be used to find a solution to  $x^7 = 3x^3 + 1$