M105 Major Lecture Topics

*If there is a long list of learning objectives, the most critical topics will be given in bold text. Other topics will be mentioned, but not the focus of the lecture. If no bold text is given for a lecture, then all topics listed are of equal importance.

ALL of these topics are reviewed in the homework assignments. Most homework assignments also have 1 to 4 application/modeling/graphing questions that apply the techniques learned in a given section.

Sections 5.1, 5.2 (review) - Intro. \& Multiplication of Polynomials

- Polynomial Terms and nomenclature
- Polynomial graph end behavior and leading coefficient test
- Evaluating polynomial functions
- Adding and subtracting polynomials
- Multiplying polynomials
- Monomial * Monomial
- Monomial * polynomial
- Polynomial * polynomial

- FOIL Method

- Square of Binomial Sum / Difference: $(A+B)^{2}(A-B)^{2}$
- Product of Sum and Difference: (A+B)(A-B)
- Function notation: $(\mathrm{f} \pm \mathrm{g})(\mathrm{x}),(\mathrm{f} \cdot \mathrm{g})(\mathrm{x})$

Section 5.3-Greatest Common Factor \& Grouping

- Factoring a monomial from a polynomial (GCF)
- Factoring by grouping

Section 5.4 A - Factoring Trinomials

- Factoring a trinomial whose leading coefficient is one
- Trial and error method
- Two variables: i.e. $x^{2}+2 x y+y^{2}$
- Trinomials with GCF
- With substitution
*****variable exponents in homework 5.4a

Section 5.4 B - Factoring Trinomials

- Factoring a trinomial whose leading coefficient is not one
- Trial and error method
- Factoring by grouping method
- Examples with GCF or substitution

Section 5.5 A - Factoring Special Forms

- Difference of Two Squares
- Perfect Square Trinomials
- Sum and Difference of Cubes

Section 5.5 B and 5.6 - Factoring Special Forms \& Strategies

- From 5.5: Repeated Factorizations: i.e. $x^{8}-1$ or $x^{2}-6 x+9-y^{4}$
- Focus on strategies to identify which factorization technique
- Mastery of factoring

Section 5.7 A (equations) - Polynomial Equations \& Applications

- Standard Form of Quadratic Equation
- Zero Product Principle
- Solving a quadratic equation
- Solving a polynomial equation
- Using graphing techniques to verify solution

Section 5.7 B (applications) - Polynomial Equations \& Applications

- Solving word problem strategies
- Modeling type questions, noting $x \& y$ intercepts, $f(a)$ evaluation from graph
- Areas with borders
- Volumes from boxes with folded edges
- Triangles with Pythagorean theorem
**** remove question above excluded points in the domain 5.7.63 (9of21)

Section 6.1 - Rational Expressions: Multiplying and Dividing

- Rational Expressions \& Functions nomenclature and definitions
- Evaluating rational functions and when answer does not exist
- Domain and Range of rational functions
- Vertical and horizontal asymptotes
- Simplifying rational expressions (and note removable discontinuities)
- Multiplying rational expressions
- Dividing rational expressions
- Note common mistakes of incorrectly dividing common terms: $(x+4) / x \neq 4$

Section 6.2 A - Rational Expressions: Adding and Subtracting

- Adding \& subtracting rational expressions with common denominator
- Finding the LCD of rational expressions with different denominators
- Using the LCD to add/subtract rational expressions with different denominators
- Note: homework set for this section only requires simply factorizations in denominators and LCDs of no more than 3 binomial factors

Section 6.2 B - Rational Expressions: Adding and Subtracting

- More complicated examples of adding/subtracting rational expressions
- Use this lecture to catch students up who are struggling with factoring, simplifying, finding LCDs for rational expressions
- Homework problems contain:
- More complicated factorizations in the denominator
- Non-rational expressions added to rational expressions
- Use of negatives to simplifying denominators, i.e.: $1 /\left(y^{2}-36\right)+1 /\left(36-y^{2}\right)$
- Adding/subtracting up to three rational expressions
- Order of operations with multiplication and division in addition to adding rational expressions
- FOILing rational expressions (or resolving summation in parentheses first)
- Rational expressions with up to 4 variables
- Rational expressions involving function notation

Section 6.3 - Complex Rational Expressions

- Simplifying complex rational expressions
- Via multiplying numerator and denominator by LCD
- Via dividing by denominator (multiplying by reciprocal)
- Negative exponential to rational form
- Evaluating function with a rational expression
- Application questions involving interest or resistors

Section 6.6 - Rational Equations

- Solving rational equations
- List restrictions, Multiply whole equation by LCD, solve, reject excluded solutions
- Function evaluation of rational equations, modeling, interpreting graph
- Note the difference between rational expressions and equations

Section 6.7 A (formulas; some applications) - Rational Expressions: Applications \& Formulas

- Solving rational formulas for a specified variable
- Examples involving average cost functions
- Examples with modeled equations

Section 6.7 B (applications) - Rational Expressions: Applications \& Formulas

- Problems involving motion (rate, distance, time)
- Problems involving work-rate (filling pool, completing task, etc)
- Problems stating relation between numbers
- Note: MML homework sets sometimes assume students have been taught the table method from the textbook

Section 7.1 - Radical Expressions \& Functions

- Square Roots
- Cube Roots
- Nth Roots (even and odd)
- For each of these:
- Notation, domain, graphs, principle root vs negative root
- Evaluating radical expressions / functions or not a real number
- Simplifying root expressions (and when to use absolute value bars)

Section 7.2 - Rational Exponents

- Rational exponents in terms of radicals, $a^{1 / n}$ or $a^{m / n}$
- Rewriting rational exponents in terms of radicals (and vice versa)
- Properties of rational exponent (i.e. review properties of exponents)
- Simplifying rational exponents (review what book/MML considers "simplified")

Section 7.3 - Multiplying \& Simplifying Radical Expressions

- Product rule for radicals
- Simplifying radicals by factoring argument (helpful to review perfect nth powers)
- Multiply radicals and then simplify

Section 7.4-Adding, Subtracting, Dividing Radical Expr.

- Adding and subtracting radical expressions (if like radicals)
- Quotient rule for radical expressions
- Simplifying radicals in order to be combined

Section 4.3 - Absolute Value Equations \& Inequalities

- Equations involving absolute values (rewriting as an OR statement, solving)
- Inequalities with absolute values an graphing
- Cases where solutions are \varnothing or

Section 4.4 - Linear Inequalities in Two Variables

- Review of graphing linear equation in two variables ($A x+B y=C$ or $y=m x+b$)
- Review concept of coordinates being true/false or satisfying equation
- Graphing linear inequality and shading half-plane that is true (w/ solid/dash line)
- With test points
- Without test points
- Vertical / horizontal half-planes \& lines from inequalities
- Systems of linear inequalities
- Cases with no solution, or infinite solutions

Section 8.1 - Square Root Property \& Completing the Sqr.

- Square Root Property
- Solving equations via the square root property
- Note: MML problems have been picked to not require rationalizing the denominator nor complex notation
- Completing the square
- Application questions (Pythagorean Theorem)

Section 8.2 - Quadratic Formula

- Developing the quadratic formula via completing the square is optional (but fun to do!)
- Quadratic Formula and solving problems
- Discriminant and graphical interpretations
- Creating quadratic equation from given solution

Section 8.3 - Quadratic Functions and their Graphs

- Basic parabolic graph of quadratic function
- Vertex, axis of symmetry
- Opens up or down
- Horizontal and vertical shifting
- Horizontal \& vertical stretching and compression
- Domain and range
- Acquiring equation from a graph of quadratic function
- Graphing quadratic functions of the form $f(x)=a(x-h)^{2}+k$
- Finding coordinates of vertex
- Graphing quadratic functions of the form $f(x)=a x^{2}+b x+c$
- Finding coordinates of vertex
- Finding maximum / minimum values
- Max / min application problems

Section 8.4 - Equations in Quadratic Form

- Quadratic forms and u-substitution
- Forms where exponent is greater than 2
- Different bases, such as binomials
- Negative exponents
- Rational Exponents

