The Trigonometric
Functions

Trigonometry was invented over 2000 years ago by the Greeks, who needed
precise methods for measuring angles and sides of triangles. In fact, the
word trigonometry was derived from the two Greek words trigonon (trian-
gle) and metria (measurement). This chapter begins with a discussion of an-
gles and how they are measured. We next introduce the trigonometric
functions by using ratios of sides of a right triangle. After extending the do-
mains of the trigonometric functions to arbitrary angles and real numbers,
we consider their graphs and graphing techniques that make use of ampli-
tudes, periods, and phase shifts. The chapter concludes with a section on ap-

plied problems.
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6.1

Angles
Figure 1
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In geometry an angle is defined as the set of points determined by two rays,
or half-lines, /; and /,, having the same endpoint O. If A and B are points on /,
and /,, as in Figure 1, we refer to angle AOB (denoted ZAOB). An angle may
also be considered as two finite line segments with a common endpoint.

In trigonometry we often interpret angles as rotations of rays. Start with a
fixed ray /;, having endpoint O, and rotate it about O, in a plane, to a position
specified by ray /,. We call /; the initial side, /, the terminal side, and O the
vertex of ZAOB. The amount or direction of rotation is not restricted in any
way. We might let /; make several revolutions in either direction about O be-
fore coming to position /,, as illustrated by the curved arrows in Figure 2.
Thus, many different angles have the same initial and terminal sides. Any two
such angles are called coterminal angles. A straight angle is an angle whose
sides lie on the same straight line but extend in opposite directions from its
vertex.

If we introduce a rectangular coordinate system, then the standard posi-
tion of an angle is obtained by taking the vertex at the origin and letting the
initial side /, coincide with the positive x-axis. If [, is rotated in a counter-
clockwise direction to the terminal position /,, then the angle is considered
positive. If [/, is rotated in a clockwise direction, the angle is negative. We
often denote angles by lowercase Greek letters such as « (alpha), B (beta), vy
(gamma), 0 (theta), ¢ (phi), and so on. Figure 3 contains sketches of two posi-
tive angles, « and (8, and a negative angle, vy. If the terminal side of an angle
in standard position is in a certain quadrant, we say that the angle is in that
quadrant. In Figure 3, « is in quadrant III, 8 is in quadrant I, and vy is in quad-
rant II. An angle is called a quadrantal angle if its terminal side lies on a co-
ordinate axis.

Figure 3 Standard position of an angle

Positive angle Positive angle Negative angle
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One unit of measurement for angles is the degree. The angle in standard po-
sition obtained by one complete revolution in the counterclockwise direction has
measure 360 degrees, written 360°. Thus, an angle of measure 1 degree (1°)
is obtained by % of one complete counterclockwise revolution. In Figure 4,
several angles measured in degrees are shown in standard position on rectan-
gular coordinate systems. Note that the first three are quadrantal angles.
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Throughout our work, a notation such as 8 = 60° specifies an angle 0
whose measure is 60°. We also refer to an angle of 60° or a 60° angle, in-
stead of using the more precise (but cumbersome) phrase an angle having
measure 60°.

EXAMPLE 1 Finding coterminal angles

If 6 = 60° is in standard position, find two positive angles and two negative
angles that are coterminal with 6.

SOLUTION  The angle 0 is shown in standard position in the first sketch in
Figure 5. To find positive coterminal angles, we may add 360° or 720° (or any
other positive integer multiple of 360°) to 6, obtaining
60° + 360° = 420° and 60° + 720° = 780°.

These coterminal angles are also shown in Figure 5.

To find negative coterminal angles, we may add —360° or —720° (or any
other negative integer multiple of 360°), obtaining

60° + (—360°) = —300°

and 60° + (—720°) = —660°,

as shown in the last two sketches in Figure 5.

Figure 5
AY AY Y AY Y
0= 60°= Ve \420° . 780° . / . —660° .
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—300°




350 CHAPTER 6 THE TRIGONOMETRIC FUNCTIONS

Figure 6
Central angle 0

4

A right angle is half of a straight angle and has measure 90°. The fol-
lowing chart contains definitions of other special types of angles.

Terminology Definition Ilustrations
acute angle 6 0° < 0 <90° 12°; 37°
obtuse angle 0 90° < 0 < 180° 95°; 157°
complementary angles «, 3 a+ B =90° 20°, 70°; 7°, 83°
supplementary angles «, 3 a+ B = 180° 115°,65°; 18°, 162°

If smaller measurements than the degree are required, we can use tenths,
hundredths, or thousandths of degrees. Alternatively, we can divide the degree
into 60 equal parts, called minutes (denoted by '), and each minute into 60
equal parts, called seconds (denoted by ”). Thus, 1° = 60, and 1’ = 60". The
notation 6 = 73°56'18" refers to an angle 6 that has measure 73 degrees,
56 minutes, 18 seconds.

EXAMPLE 2 Finding complementary angles

Find the angle that is complementary to 6:
(a) 6 = 25°43'37" (b) 6 =73.26°

SOLUTION We wish to find 90° — 6. It is convenient to write 90° as an
equivalent measure, 89°59'60".

(@) 90° =89°59’60"  (b) 90° = 90.00°
§ = 25°43'37" 0 =73.26°
90° — 0 = 64°16/23" 90° — 6 = 16.74° /

Degree measure for angles is used in applied areas such as surveying, navi-
gation, and the design of mechanical equipment. In scientific applications that
require calculus, it is customary to employ radian measure. To define an angle
of radian measure 1, we consider a circle of any radius 7 A central angle of a
circle is an angle whose vertex is at the center of the circle. If 6 is the central
angle shown in Figure 6, we say that the arc AP (denoted AP) of the circle
subtends 6 or that 6 is subtended by AP. If the length of AP is equal to the
radius r of the circle, then 6 has a measure of one radian, as in the next definition.

Definition of Radian Measure

One radian is the measure of the central angle of a circle subtended by an
arc equal in length to the radius of the circle.




Figure 7
(a) a = 1 radian
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If we consider a circle of radius 7 then an angle & whose measure is 1 ra-
dian intercepts an arc AP of length 5 as illustrated in Figure 7(a). The angle 8
in Figure 7(b) has radian measure 2, since it is subtended by an arc of length
2r. Similarly, vy in (c) of the figure has radian measure 3, since it is subtended
by an arc of length 3r.

(b) B = 2 radians (c) y = 3 radians (d) 360° = 27 = 6.28 radians

P

To find the radian measure corresponding to 360°, we must find the num-
ber of times that a circular arc of length r can be laid off along the circumfer-
ence (see Figure 7(d)). This number is not an integer or even a rational number.
Since the circumference of the circle is 277, the number of times r units can be
laid off is 2. Thus, an angle of measure 27 radians corresponds to the de-
gree measure 360°, and we write 360° = 27 radians. This result gives us the
following relationships.

Relationships Between
Degrees and Radians

(@)) 180° = srradians

@) 1o = %radian ~ 0,0175 radian
1 (e}
@3) 1 radian = ( 80 ) ~ 57.2958°
ar

When radian measure of an angle is used, no units will be indicated. Thus,
if an angle has radian measure 5, we write 6 = 5 instead of 6 = 5 radians.
There should be no confusion as to whether radian or degree measure is being
used, since if 0 has degree measure 5°, we write § = 5°, and not 6 = 5.
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The next chart illustrates how to change from one angular measure to

another.

Changing Angular Measures

To change Multiply by Ilustrations
T T S
d to radi — 150° = 150° = —
egrees to radians 180° (180°> 5
5
205° = 225°( —— | = 2"
180° 4
180° 7 7 180°
radians to degrees zZ_T = 315°
T 4 4 T
1 [e]
T m(189%) oo
3 3 ™

We may use the techniques illustrated in the preceding chart to obtain the
following table, which displays the corresponding radian and degree measures
of special angles.

Radians 0 @ o w w 2w 37 S 7w S57 4w 3w 5w Tw 1l )
i b s 7 om0 0Or L e
6 4 3 2 3 4 6 " 6 4 3 2 3 4 &6 T
Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Several of these special angles, in radian measure, are shown in standard
position in Figure 8.
Figure 8
Ay AY + Yy AY
T T a
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\

EXAMPLE 3 Changing radians to degrees, minutes, and seconds

If 6 = 3, approximate 6 in terms of degrees, minutes, and seconds.
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SOLUTION
3 radians = 3(1800) multiply by 180°
aa T

~ 171.8873° approximate
= 171° + (0.8873)(60") 1° = 60’
= 171° + 53.238’ multiply
= 171° + 53’ + (0.238)(60") 1" = 60"
= 171°53' + 14.28" multiply
~ 171°53'14" approximate V4

EXAMPLE 4 Expressing minutes and seconds as decimal degrees

Express 19°47'23" as a decimal, to the nearest ten-thousandth of a degree.

SOLUTION  Sincel’ = (%)O and 1" = (61—0)' = (ﬁ)o,

19°47'23" = 19° + (2)° + (Z)°

~ 19° + 0.7833° + 0.0064°

= 19.7897°. V4

The next result specifies the relationship between the length of a circular
arc and the central angle that it subtends.

Formula for the
Length of a Circular Arc

If an arc of length s on a circle of radius r subtends a central angle of ra-
dian measure 6, then

s = ré.

A mnemonic device for remembering
s = r0 is SRO (Standing Room Only).

Figure 9

() (b)

PROOF A typical arc of length s and the corresponding central angle 6 are
shown in Figure 9(a). Figure 9(b) shows an arc of length s, and central angle
0,. If radian measure is used, then, from plane geometry, the ratio of the
lengths of the arcs is the same as the ratio of the angular measures; that is,

0 0
- =, or S = — 5.
01 01

(continued)
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If we consider the special case in which 6, has radian measure 1, then, from
the definition of radian, s; = r and the last equation becomes

SZI-rZrG.

/

Notice that if § = 27, then the formula for the length of a circular arc
becomes s = r(27), which is simply the formula for the circumference of a
circle, C = 27r.

The next formula is proved in a similar manner.

Formula for the
Area of a Circular Sector

If 6 is the radian measure of a central angle of a circle of radius r and if A
is the area of the circular sector determined by 6, then

A =3r%0.

Figure 10
(@) (b)
<) ( 0
Figure 11
y
s =10 cm

6 = 2.5 radians
=~ 143.24°

=Y

r=4cm

PROOF If A and A, are the areas of the sectors in Figures 10(a) and 10(b),
respectively, then, from plane geometry,

A 0 0
—=— or A=—A.
A6 0,

If we consider the special case 6, = 27, then A; = 7% and

6 1
A= P =—r
2w T /

When using the preceding formulas, it is important to remember to use the
radian measure of 6 rather than the degree measure, as illustrated in the next
example.

EXAMPLE 5 Using the circular arc and sector formulas

In Figure 11, a central angle 6 is subtended by an arc 10 centimeters long on
a circle of radius 4 centimeters.

(a) Approximate the measure of 6 in degrees.

(b) Find the area of the circular sector determined by 6.

SOLUTION  We proceed as follows:

(@) s=r0 length of a circular arc formula
s

0=— solve for 6
r

=0=25 lets=10,r=4



Figure 12

24 inches
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This is the radian measure of 6. Changing to degrees, we have

180° 450°
0=125 = =~ 143.24°.

T T
(b) A= %rzﬁ area of a circular sector formula
= %(4)2(2.5) let r = 4, 0 = 2.5 radians
= 20 cm? multiply /

The angular speed of a wheel that is rotating at a constant rate is the
angle generated in one unit of time by a line segment from the center of the
wheel to a point P on the circumference (see Figure 12). The linear speed of
a point P on the circumference is the distance that P travels per unit of time.
By dividing both sides of the formula for a circular arc by time 7, we obtain a
relationship for linear speed and angular speed; that is,

linear speed angular speed
l l
- vilently, S=r-2
D or, equivalently, -=y-—
t ot q G p

EXAMPLE 6 Finding angular and linear speeds

Suppose that the wheel in Figure 12 is rotating at a rate of 800 rpm (revolu-
tions per minute).

(a) Find the angular speed of the wheel.

(b) Find the linear speed (in in./min and mi/hr) of a point P on the circum-
ference of the wheel.

SOLUTION

(a) Let O denote the center of the wheel, and let P be a point on the circum-
ference. Because the number of revolutions per minute is 800 and because
each revolution generates an angle of 27 radians, the angle generated by the
line segment OP in one minute has radian measure (800)(27); that is,

800 revolutions ) 24r radians

angular speed = = 16007 radians per minute.

1 minute 1 revolution

Note that the diameter of the wheel is irrelevant in finding the angular speed.
(b) linear speed = radius - angular speed

= (12 in.)(16007 rad/min)

= 19,2007 in./min
Converting in./min to mi/hr, we get

19,2007rin. 60 min 1 ft 1 mi
1 min 1 hr 12 in. 5280 ft

~ 57.1 mi/hr.

Unlike the angular speed, the linear speed is dependent on the diameter of the
wheel.
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6.1 Exercises

Exer. 1-4: If the given angle is in standard position,
find two positive coterminal angles and two negative co-

terminal angles.

1 (a) 120° (b) 135° (c) —30°
2 (a) 240° (b) 315° (c) —150°
3 (a) 620° (b) 5?” (<) _TW

4 (a) 570° (b) 2?” (c) —%”

Exer. 5-6: Find the angle that is complementary to 6.

5 (a) 6=5°17'34"

6 (a) 6=634'15"

(b) 6 =32.5°

(b) 6= 82.73°

Exer. 7-8: Find the angle that is supplementary to 6.

7 (a) 6= 48°51'37"

8 (a) 6=152°124"

(b) 6= 136.42°

(b) 6= 159°

Exer. 9-12: Find the exact radian measure of the angle.

9 (a) 150° (b) —60°  (c) 225°
10 (a) 120° (b) —135°  (c) 210°
11 (a) 450° (b) 72° (c) 100°
12 (a) 630° (b) 54° (c) 95°

Exer. 13-16: Find the exact degree measure of the angle.

B@T  mT (X
6 @X mT (o
5@ -2 B Tr (O
16 @) -2 ()9 (=

Exer. 17-20: Express 0 in terms of degrees, minutes, and
seconds, to the nearest second.

17 6=2 18 6=15

19 6=5 200=4

Exer. 21-24: Express the angle as a decimal, to the nearest
ten-thousandth of a degree.

21 37°41' 22 83°17

23 115°26'27" 24 258°39'52"

Exer. 25-28: Express the angle in terms of degrees, min-
utes, and seconds, to the nearest second.

25 63.169° 26 12.864°

27 310.6215° 28 81.7238°

Exer. 29-30: If a circular arc of the given length s subtends
the central angle 6 on a circle, find the radius of the circle.

29 s=10cm, 6=4 30 s =3km, 6=20°

Exer. 31-32: (a) Find the length of the arc of the colored
sector in the figure. (b) Find the area of the sector.

31 32

e .

Exer. 33-34: (a) Find the radian and degree measures of
the central angle 0 subtended by the given arc of length s
on a circle of radius r. (b) Find the area of the sector de-
termined by 6.

33 s=7cm, r=4cm 34 s =3f1ft, r=20in.

Exer. 35-36: (a) Find the length of the arc that subtends the
given central angle 0 on a circle of diameter d. (b) Find the
area of the sector determined by 6.

35 6=50° d=16m 36 =22, d=120cm



37 Measuring distances on Earth The distance between two
points A and B on Earth is measured along a circle having
center C at the center of Earth and radius equal to the distance
from C to the surface (see the figure). If the diameter of Earth
is approximately 8000 miles, approximate the distance be-
tween A and B if angle ACB has the indicated measure:

(a) 60°

(b) 45°

() 30°  (d) 10°  (e) I°

Exercise 37

B4

38 Nautical miles Refer to Exercise 37. If angle ACB has
measure 1’, then the distance between A and B is a nautical
mile. Approximate the number of land (statute) miles in a
nautical mile.

39 Measuring angles using distance Refer to Exercise 37. If
two points A and B are 500 miles apart, express angle ACB
in radians and in degrees.

40 A hexagon is inscribed in a circle. If the difference between
the area of the circle and the area of the hexagon is 24 m?,
use the formula for the area of a sector to approximate the
radius r of the circle.

41 Window area A rectangular window measures 54 inches by
24 inches. There is a 17-inch wiper blade attached by a
5-inch arm at the center of the base of the window, as
shown in the figure. If the arm rotates 120°, approximate
the percentage of the window’s area that is wiped by the
blade.
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Exercise 41

42 Atornado’s core A simple model of the core of a tornado
is a right circular cylinder that rotates about its axis. If a
tornado has a core diameter of 200 feet and maximum wind
speed of 180 mi/hr (or 264 ft/sec) at the perimeter of the
core, approximate the number of revolutions the core makes
each minute.

43 Earth’s rotation Earth rotates about its axis once every
23 hours, 56 minutes, and 4 seconds. Approximate the num-
ber of radians Earth rotates in one second.

44 Earth’s rotation Refer to Exercise 43. The equatorial radius
of Earth is approximately 3963.3 miles. Find the linear speed
of a point on the equator as a result of Earth’s rotation.

Exer. 45-46: A wheel of the given radius is rotating at the

indicated rate.

(a) Find the angular speed (in radians per minute).

(b) Find the linear speed of a point on the circumference
(in ft/min).

45 radius 5 in., 40 rpm 46 radius 9 in., 2400 rpm

47 Rotation of compact discs (CDs) The drive motor of a par-
ticular CD player is controlled to rotate at a speed of 200 rpm
when reading a track 5.7 centimeters from the center of the
CD. The speed of the drive motor must vary so that the read-
ing of the data occurs at a constant rate.

(a) Find the angular speed (in radians per minute) of the
drive motor when it is reading a track 5.7 centimeters
from the center of the CD.
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(b) Find the linear speed (in cm/sec) of a point on the CD 50 Pendulum’s swing A pendulum in a grandfather clock is
that is 5.7 centimeters from the center of the CD. 4 feet long and swings back and forth along a 6-inch arc. Ap-
proximate the angle (in degrees) through which the pendulum
(c) Find the angular speed (in rpm) of the drive motor passes during one swing.
when it is reading a track 3 centimeters from the center . . . .
of the CD. 51 Pizza values A vender sells two sizes of pizza by the slice.

The small slice is é of a circular 18-inch-diameter pizza, and

. . 1 . .
(d) Find a function S that gives the drive motor speed in rpm it sells for $2.00. The large slice is g of a circular 26-inch-

for any radius r in centimeters, where 2.3 = r = 5.9. diametér pizza, and it sells for $3.00. Which slice provides
What type of variation exists between the drive motor more pizza per dollar?
speed and the radius of the track being read? Check 52 Bicycle mechanics The sprocket assembly for a bicycle is

your answer by graphing S and finding the speeds for

shown in the figure. If the sprocket of radius r, rotates through
r=3andr = 5.7.

an angle of 6, radians, find the corresponding angle of rotation

. . . . . . for the sprocket of radius r,.
48 Tirerevolutions A typical tire for a compact car is 22 inches

in diameter. If the car is traveling at a speed of 60 mi/hr, find Exercise 52
the number of revolutions the tire makes per minute.

49 Cargo winch A large winch of diameter 3 feet is used to
hoist cargo, as shown in the figure.

(a) Find the distance the cargo is lifted if the winch rotates
through an angle of radian measure 77/4.

(b) Find the angle (in radians) through which the winch
must rotate in order to lift the cargo d feet.

53 Bicycle mechanics Refer to Exercise 52. An expert cyclist
can attain a speed of 40 mi/hr. If the sprocket assembly has
r, = 5 in.,, r, = 2 in., and the wheel has a diameter of
28 inches, approximately how many revolutions per minute
of the front sprocket wheel will produce a speed of
40 mi/hr? (Hint: First change 40 mi/hr to in./sec.)

Exercise 49

54 Magnetic pole drift The geographic and magnetic north
poles have different locations. Currently, the magnetic north
pole is drifting westward through 0.0017 radian per year,
where the angle of drift has its vertex at the center of Earth.
If this movement continues, approximately how many years

| ’| | ‘ | will it take for the magnetic north pole to drift a total of 5°?

6 2 We shall introduce the trigonometric functions in the manner in which they
S originated historically—as ratios of sides of a right triangle. A triangle is a

TfigO nometric Functions right triangle if one of its angles is a right angle. If 6 is any acute angle, we
may consider a right triangle having 6 as one of its angles, as in Figure 1,
of Angles



Figure 1

*We will refer to these six trigonomet-
ric functions as the trigonometric
functions. Here are some other, less
common trigonometric functions that
we will not use in this text:
vers § = 1 — cos 6
covers § = 1 — sin 6
exsec 0 = sec 6 — 1

I
hav 0 = 5 vers 6

Figure 3

hyp opp

adj
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6.2 Trigonometric Functions of Angles

where the symbol [ specifies the 90° angle. Six ratios can be obtained using
the lengths a, b, and ¢ of the sides of the triangle:

We can show that these ratios depend only on 6, and not on the size of the trian-

gle, as indicated in Figure 2. Since the two triangles have equal angles, they are

similar, and therefore ratios of corresponding sides are proportional. For example,
b b a _a b _b

c ¢ ¢ 7 a a’

Thus, for each 6, the six ratios are uniquely determined and hence are func-
tions of 6. They are called the trigonometric functions* and are designated
as the sine, cosine, tangent, cotangent, secant, and cosecant functions, ab-
breviated sin, cos, tan, cot, sec, and csc, respectively. The symbol sin (6), or
sin 6, is used for the ratio b/c, which the sine function associates with 6. Val-
ues of the other five functions are denoted in similar fashion. To summarize, if
0 is the acute angle of the right triangle in Figure 1, then, by definition,

) b a
sin 0 = — cos = — tan 0 = —
c c a
=~ o= to=-
csc 0= — sec 6 = — coth = —.
b a b

The domain of each of the six trigonometric functions is the set of all
acute angles. Later in this section we will extend the domains to larger sets of
angles, and in the next section, to real numbers.

If 6 is the angle in Figure 1, we refer to the sides of the triangle of lengths
a, b, and c as the adjacent side, opposite side, and hypotenuse, respectively.
We shall use adj, opp, and hyp to denote the lengths of the sides. We may then
represent the triangle as in Figure 3. With this notation, the trigonometric func-
tions may be expressed as follows.

Definition of the Trigonometric
Functions of an Acute Angle
of a Right Triangle

dai
sin@zﬂ cos(9=ﬂ tan@zﬂ?
hyp hyp adj
h h dj
csc 6 = P sec 6 = _yP cot § = aa
opp adj opp

A mnemonic device for remembering
the top row in the definition is

SOH CAH TOA,

where SOH is an abbreviation for
Sin 6 = Opp/Hyp, and so forth.

The formulas in the preceding definition can be applied to any right triangle
without attaching the labels a, b, ¢ to the sides. Since the lengths of the sides
of a triangle are positive real numbers, the values of the six trigonometric func-
tions are positive for every acute angle 6. Moreover, the hypotenuse is always
greater than the adjacent or opposite side, and hence sin 8 < 1, cos 6 < 1,
csc 0 > 1, and sec 6 > 1 for every acute angle 6.
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Note that since

h
sinOZ@ and CSCGZLP,

hyp opp
sin 6 and csc 6 are reciprocals of each other, giving us the two identities in the

left-hand column of the next box. Similarly, cos 6 and sec 6 are reciprocals of
each other, as are tan 6 and cot 6.

Reciprocal Identiti 1 ! —
procal Identities sin 6 = cos 0 = tan 0 =
cse sec O cot 0
1
= = t =
csc 6 sin 6 sec 0 cos 6 et tan 6

Several other important identities involving the trigonometric functions
will be discussed at the end of this section.

EXAMPLE 1 Finding trigonometric function values

If 61is an acute angle and cos 6 = %, find the values of the trigonometric func-

tions of 6.
Figure 4 SOLUTION  We begin by sketching a right triangle having an acute angle 60
with adj = 3 and hyp = 4, as shown in Figure 4, and proceed as follows:
4 3% + (opp)* = 42 Pythagorean theorem
oep (opp)* = 16 — 9 = 7 isolate (opp)>
opp = V7 take the square root
3

Applying the definition of the trigonometric functions of an acute angle of a
right triangle, we obtain the following:

. opp V7 adj 3 opp V7

sin = — = — cos h =— =— ng=—=—
hyp 4 hyp 4 adj 3

ccg=P_ 4 g p_ 4 o3
opp V7 adj 3 opp V7 /

In Example 1 we could have rationalized the denominators for csc 6 and
cot 6, writing

a1 3V7
— and cot = ——.

0 =
CSC 7 7

However, in most examples and exercises we will leave expressions in unra-
tionalized form. An exception to this practice is the special trigonometric func-
tion values corresponding to 60°, 30°, and 45°, which are obtained in the
following example.



Figure 5

Figure 6

V2

45°

45°
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EXAMPLE 2 Finding trigonometric function values of 60°, 30°, and 45°

Find the values of the trigonometric functions that correspond to 6:
(a) 6= 60° (b) 6= 30° (c) 6=45°

SOLUTION  Consider an equilateral triangle with sides of length 2. The me-
dian from one vertex to the opposite side bisects the angle at that vertex, as
illustrated by the dashes in Figure 5. By the Pythagorean theorem, the side op-
posite 60° in the shaded right triangle has length \/3. Using the formulas for
the trigonometric functions of an acute angle of a right triangle, we obtain the
values corresponding to 60° and 30° as follows:

V3 1 V3
() sin60° = — cos 60° = — tan 60° = — = /3
2 2 1
2 2V3 2 1 V3
60° = — == e (60° = — = —
csc 3 3 sec 60 1 2 co V3 3
1 V3 1 V3
(b) sin 30° = B cos 30° = - tan 30° = NG =3
2 2\V3 V3
30°=-"=2 30°=——="2 o= 2o
csc I sec 3 3 cot 30 1 V3

(c) To find the values for 8§ = 45°, we may consider an isosceles right triangle
whose two equal sides have length 1, as illustrated in Figure 6. By the
Pythagorean theorem, the length of the hypotenuse is \/2. Hence, the values
corresponding to 45° are as follows:

2 1
sin 45° = = i = cos 45° tan 45° = T =1

2

csc 45° =

-|S Sl-

1
= V2 = sec45° COt4SO=T=1

For reference, we list the values found in Example 2, together with the ra-
dian measures of the angles, in the following table. Two reasons for stressing
these values are that they are exact and that they occur frequently in work in-
volving trigonometry. Because of the importance of these special values, it is
a good idea either to memorize the table or to learn to find the values quickly
by using triangles, as in Example 2.
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Figure 7

Special Values of the Trigonometric Functions

0 (radians) 0 (degrees) sin @ |(cos O |tan 0 | cot O | sec 0 | csc 6
T 1 V3| V3 2V3
— 30° — —_— | — 3 | — | 2
6 2 2 3 V3 3
T o \/E \6
s 45 5 5 1 1 V2 | V2
3 1 - 3 2
l 60° ﬁ _ \/ 3 ﬁ 2 \_f?)
3 2 2 3 3

The next example illustrates a practical use for trigonometric functions of
acute angles. Additional applications involving right triangles will be consid-
ered in Section 6.7.

EXAMPLE 3 Finding the height of a flagpole

A surveyor observes that at a point A, located on level ground a distance 25.0 feet
from the base B of a flagpole, the angle between the ground and the top of the
pole is 30°. Approximate the height % of the pole to the nearest tenth of a foot.

SOLUTION  Referring to Figure 7, we see that we want to relate the oppo-
site side and the adjacent side, & and 25, respectively, to the 30° angle. This
suggests that we use a trigonometric function involving those two sides—
namely, tan or cot. It is usually easier to solve the problem if we select the
function for which the variable is in the numerator. Hence, we have

h
tan 30° = %5 or, equivalently, & = 25 tan 30°.

We use the value of tan 30° from Example 2 to find /:

V3
h = 25(7) ~ 14.4 ft 7

It is possible to approximate, to any degree of accuracy, the values of the
trigonometric functions for any acute angle. Calculators have keys labeled
, , and that can be used to approximate values of these functions.
The values of csc, sec, and cot may then be found by means of the reciprocal
key. Before using a calculator to find function values that correspond to the
radian measure of an acute angle, be sure that the calculator is in radian
mode. For values corresponding to degree measure, select degree mode.
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As an illustration (see Figure 8), to find sin 30° on a typical calculator, we
place the calculator in degree mode and use the key to obtain
sin 30° = 0.5, which is the exact value. Using the same procedure for 60°, we
obtain a decimal approximation to \/3/2, such as

sin 60° = 0.8660.

Most calculators give eight- to ten-decimal-place accuracy for such func-
tion values; throughout the text, however, we will usually round off values to
four decimal places.

To find a value such as cos 1.3 (see Figure 9), where 1.3 is the radian
measure of an acute angle, we place the calculator in radian mode and use the

key, obtaining

cos 1.3 = 0.2675.

For sec 1.3, we could find cos 1.3 and then use the reciprocal key, usually la-

beled or (as shown in Figure 9), to obtain

1
~ 3.7383.
cos 1.3

sec 1.3 =

The formulas listed in the box on the next page are, without doubt, the most
important identities in trigonometry, because they can be used to simplify and
unify many different aspects of the subject. Since the formulas are part of the
foundation for work in trigonometry, they are called the fundamental identities.

Three of the fundamental identities involve squares, such as (sin 6)*> and
(cos 6)% In general, if n is an integer different from —1, then a power such as
(cos 0)" is written cos” 6. The symbols sin~! § and cos™' 0 are reserved for in-
verse trigonometric functions, which we will discuss in Section 6.4 and treat
thoroughly in the next chapter. With this agreement on notation, we have, for
example,

cos? 0 = (cos 0)* = (cos 0)(cos 0)
tan® 0 = (tan 6)° = (tan 6)(tan 6)(tan 6)
sect 0 = (sec 0)* = (sec 0)(sec O)(sec 0)(sec 0).
Let us next list all the fundamental identities and then discuss the proofs.
These identities are true for every acute angle 6, and 6 may take on various

forms. For example, using the first Pythagorean identity with 6 = 4a, we
know that

sin4a + cos?4a = 1.

We shall see later that these identities are also true for other angles and for real
numbers.
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The Fundamental Identities

(1) The reciprocal identities:

sec 0 = cot O =

csc 6 = —
sin 6 cos 0 tan 6

(2) The tangent and cotangent identities:

sin 6 cos 6

tan 0 = :
cos 6 sin 6

(3) The Pythagorean identities:

sin@ +cos’f=1 1 +tan?0=sec’h 1+ cot>?0 = csc’>

Figure 10

PROOFS

(1) The reciprocal identities were established earlier in this section.

(2) To prove the tangent identity, we refer to the right triangle in Figure 10
and use definitions of trigonometric functions as follows:

tanﬁ—ﬂ—b—/c—sme
a afc cosb

To verify the cotangent identity, we use a reciprocal identity and the tan-
gent identity:

I 1 _cos 0
tan @ sin O/cos @  sin 0

cot O =

(3) The Pythagorean identities are so named because of the first step in the
following proof. Referring to Figure 10, we obtain

b* + a* = ¢ Pythagorean theorem
b\ ay cV
— ] +{—] =1— divide by ¢?
c c c
(sin 0)* + (cos ) = 1 definitions of sin 6 and cos 6

sin? 0 + cos? 0 = 1. equivalent notation
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We may use this identity to verify the second Pythagorean identity as

follows:
sin® 0 + cos® 0 1 o
5 = 5 divide by cos® 6
cos® 6 cos- 6
sin  cos’f 1

= equivalent equation
cos’ 6 cos’H  cos’ 0

sin 0\ cos 0\ 1V
+ = law of exponents
cos 6 cos 0 cos 6

tan’ 0 + 1 = sec’ 6 tangent and reciprocal identities

To prove the third Pythagorean identity, 1 + cot®> § = csc? 6, we could di-
vide both sides of the identity sin* § + cos” 6§ = 1 by sin® 6. 7/

We can use the fundamental identities to express each trigonometric func-
tion in terms of any other trigonometric function. Two illustrations are given
in the next example.

EXAMPLE 4 Using fundamental identities

Let 6 be an acute angle.

(a) Express sin 6 in terms of cos 6.
(b) Express tan 6 in terms of sin 6.
SOLUTION
(a) We may proceed as follows:
sin? 0 + cos® 0 = 1 Pythagorean identity
sin? @ = 1 — cos® isolate sin* 6
sin @ = =\V/1 — cos® @ take the square root
sin @ = V1 — cos® 0 sin § > 0 for acute angles

Later in this section (Example 12) we will consider a simplification involving
a non-acute angle 6.

(b) If we begin with the fundamental identity

sin 0
cos 0’

tan 0 =

then all that remains is to express cos 6 in terms of sin . We can do this by
solving sin? 6 + cos* § = 1 for cos 6, obtaining

cos =\V1—sin’6 for 0<0<§.

(continued)
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Hence,
sin 6 sin 6 T
tan 6 = = for 0<O<—.
cos & /1 —sin? 6 2 V4

Fundamental identities are often used to simplify expressions involving
trigonometric functions, as illustrated in the next example.

EXAMPLE 5 Showing that an equation is an identity

Show that the following equation is an identity by transforming the left-hand
side into the right-hand side:

(sec 0 + tan 6)(1 — sin 6) = cos 6

SOLUTION  We begin with the left-hand side and proceed as follows:

(sec 6 + tan 6)(1 — sin 0)

1 sin 6 . reciprocal and
cos 0 * cos 0 (1 — sin 6) tangent identities

_ 1 + sin 6 (1 — sin 6) add fractions
cos 6

— Qin?
_ 1 — sin” 0 multiply

cos 6

2
_ cos 0 sin? @ + cos® 6 = 1

cos 0

= cos 0 cancel cos 0 /

There are other ways to simplify the expression on the left-hand side in
Example 5. We could first multiply the two factors and then simplify and com-
bine terms. The method we employed—changing all expressions to expres-
sions that involve only sines and cosines—is often useful. However, that
technique does not always lead to the shortest possible simplification.

Hereafter, we shall use the phrase verify an identity instead of show that
an equation is an identity. When verifying an identity, we often use funda-
mental identities and algebraic manipulations to simplify expressions, as we
did in the preceding example. As with the fundamental identities, we under-
stand that an identity that contains fractions is valid for all values of the vari-
ables such that no denominator is zero.
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EXAMPLE 6 Verifying anidentity

Verify the following identity by transforming the left-hand side into the right-
hand side:

tan 6 + cos 6

- =sec O + cot 6
sin 6

SOLUTION  We may transform the left-hand side into the right-hand side as
follows:

tan 6 + cos 6 tan § = cos 0

divide numerator by sin 60

sin 0 sinf® sin 6
sin 6
cos 6
= ——+ cotf tangent and cotangent identities
sin
sin 6 1 )
= . — + cot 0 rule for quotients
cos 6 sin 6
1 .
= + cot 6 cancel sin 0
cos 0
= sec 6 + cot 0 reciprocal identity /

In Section 7.1 we will verify many other identities using methods similar
to those used in Examples 5 and 6.

Since many applied problems involve angles that are not acute, it is nec-
essary to extend the definition of the trigonometric functions. We make this
extension by using the standard position of an angle 6 on a rectangular
coordinate system. If 6 is acute, we have the situation illustrated in Figure 11,
where we have chosen a point P(x, y) on the terminal side of # and where
d(O, P) = r = Vx* + y* Referring to triangle OQP, we have

sinﬂzﬂzl, cosﬂz—zi, and tanOZEZX.
hyp r hyp r adj x

We now wish to consider angles of the types illustrated in Figure 12 on
the next page (or any other angle, either positive, negative, or zero). Note that
in Figure 12 the value of x or y may be negative. In each case, side QP (opp in
Figure 12) has length |y|, side OQ (adj in Figure 12) has length |x|, and the
hypotenuse OP has length r. We shall define the six trigonometric functions so
that their values agree with those given previously whenever the angle is acute.
It is understood that if a zero denominator occurs, then the corresponding
function value is undefined.
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Figure 12
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P(x,y)
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Definition of the Trigonometric
Functions of Any Angle

Let 0 be an angle in standard position on a rectangular coordinate system,
and let P(x, y) be any point other than the origin O on the terminal side of 6.
If d(O, P) = r = Vx> + y?, then
Y

sin 0 = > o () = — tan 6 = 2 (ifx # 0)
r r X

r .
esc 6= (ify#0) secf=— (fx#0) coth=-— (ify = 0).
X y

We can show, using similar triangles, that the formulas in this definition
do not depend on the point P(x, y) that is chosen on the terminal side of 6. The
fundamental identities, which were established for acute angles, are also true
for trigonometric functions of any angle.

The domains of the sine and cosine functions consist of all angles 6. How-
ever, tan 0 and sec 6 are undefined if x = 0O (that is, if the terminal side of 0 is
on the y-axis). Thus, the domains of the tangent and the secant functions con-
sist of all angles except those of radian measure (77/2) + 7rn for any integer n.
Some special cases are *7/2, +317/2, and =57/2. The corresponding degree
measures are =90°, £270°, and *+450°.

The domains of the cotangent and cosecant functions consist of all angles
except those that have y = 0 (that is, all angles except those having terminal
sides on the x-axis). These are the angles of radian measure 7n (or degree
measure 180° - n) for any integer n.



Figure 13

P(—15,8)
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Our discussion of domains is summarized in the following table, where n
denotes any integer.

Function Domain
sine, cosine every angle 6
tangent, secant every angle 6 except 6 = g + @n = 90° + 180° - n
cotangent, cosecant every angle 6 except 6 = mn = 180° - n

Q»/%

CY

For any point P(x, y) in the preceding definition, |x| = r and |y| = r or,

equivalently, |x/r| = 1 and |y/r| = 1. Thus,

|sin @] =1, |cos @] =1, |cscH| =1, and |[sec | =1

for every 6 in the domains of these functions.

EXAMPLE 7 Finding trigonometric function values
of an angle in standard position

If 6 is an angle in standard position on a rectangular coordinate system and if
P(—15, 8) is on the terminal side of 6, find the values of the six trigonometric
functions of 6.

SOLUTION  The point P(—15, 8) is shown in Figure 13. Applying the def-
inition of the trigonometric functions of any angle with x = —15,y = 8, and

r=Vxl+y2= V(=157 + & = V289 = 17,

we obtain the following:

sin 6 Y 8 cos 6 al 15 tan 6 J 8

1 - — = — e — el = — = ——

r 17 r 17 X 15

p r 7 0 r 17 ‘o X 15

csc=—=— sec=—= —— cotg=—=——
y 8 X 15 y 8 /7

EXAMPLE 8 Finding trigonometric function values
of an angle in standard position

An angle 6 is in standard position, and its terminal side lies in quadrant III on
the line y = 3x. Find the values of the trigonometric functions of 6.
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Figure 14

Figure 15

3

2

.

PO, —1)

=Y

SOLUTION  The graph of y = 3xis sketched in Figure 14, together with the
initial and terminal sides of 6. Since the terminal side of 6 is in quadrant III,
we begin by choosing a convenient negative value of x, say x = —1. Substi-
tuting in y = 3x gives us y = 3(—1) = —3, and hence P(—1, —3) is on the
terminal side. Applying the definition of the trigonometric functions of any
angle with

x=-1, y=-3, and r=\/x2+y2:\/(_1)2+(_3)2:m
gives us
no— - b= ———  tanp=— =3
sin = — cos = — anf=—=
V10 V10 -1
V10 1 -1 1
CSCO=—T sec § = — 1 cot0=_—3=? 7

The definition of the trigonometric functions of any angle may be applied
if 6 is a quadrantal angle. The procedure is illustrated by the next example.

EXAMPLE 9 Finding trigonometric function values of a quadrantal angle

If 6 = 37r/2, find the values of the trigonometric functions of 6.

SOLUTION  Note that 377/2 = 270°. If 0 is placed in standard position, the
terminal side of 6 coincides with the negative y-axis, as shown in Figure 15.
To apply the definition of the trigonometric functions of any angle, we may
choose any point P on the terminal side of 6. For simplicity, we use P(0, —1).

In this case, x = 0,y = —1, r = 1, and hence
37 -1 374 O
1 — T e— —1 —:—:O
sin > I cos > 1
3 1 R 0
csc— =—=—1 cot— =——=0.
2 -1 2 —1

The tangent and secant functions are undefined, since the meaningless expres-
sions tan # = (—1)/0 and sec # = 1/0 occur when we substitute in the ap-
propriate formulas. /

Let us determine the signs associated with values of the trigonometric
functions. If 6 is in quadrant II and P(x, y) is a point on the terminal side, then
x is negative and y is positive. Hence, sin = y/r and csc 0 = r/y are posi-
tive, and the other four trigonometric functions, which all involve x, are nega-
tive. Checking the remaining quadrants in a similar fashion, we obtain the
following table.



Figure 16
Positive trigonometric functions
AY
Sin
Csc All
x
Tan Cos
Cot Sec

A mnemonic device for remembering

the quadrants in which the trigono-
metric functions are positive is “A
Smart Trig Class,” which corresponds

to All Sin Tan Cos.
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Signs of the Trigonometric Functions

Quadrant Positive Negative
containing 6 functions functions
1 all none
1I sin, csc cos, sec, tan, cot
I tan, cot sin, csc, cos, sec
I\Y Cos, sec sin, csc, tan, cot
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The diagram in Figure 16 may be useful for remembering quadrants in
which trigonometric functions are positive. If a function is not listed (such as
cos in quadrant II), then that function is negative. We finish this section with
three examples that require using the information in the preceding table.

EXAMPLE 10 Finding the quadrant containing an angle

Find the quadrant containing 6 if both cos # > 0 and sin 6 < 0.

SOLUTION  Referring to the table of signs or Figure 16, we see that
cos 8 > 0 (cosine is positive) if 6 is in quadrant I or IV and that sin 6 < 0
(sine is negative) if 6 is in quadrant III or I'V. Hence, for both conditions to be
satisfied, # must be in quadrant IV. V4

EXAMPLE 11 Finding values of trigonometric

functions from prescribed conditions

If sin 0 = % and tan 6 < 0, use fundamental identities to find the values of the
other five trigonometric functions.

SOLUTION  Sincesin § = % > 0 (positive) and tan 6 < 0 (negative), 6 is in

quadrant II. Using the relationship sin* § + cos? § = 1 and the fact that cos 6
is negative in quadrant I, we have

cos§=—\V1—sin?§=—\/1 — @)22 _\/%: —%.

Next we use the tangent identity to obtain

Finally, using the reciprocal identities gives us

o= 11 5
VT Gne 35 3
o= | 5
see Ccos® —4/5 4
1 1 4
coth = — -

@n6 —3/4 3 /
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6.2 Exercises

EXAMPLE 12

Using fundamental identities

Rewrite \V/cos? 6 + sin? § + cot®  in nonradical form without using absolute
values for 7 < 6 < 2.

SOLUTION

Vecos2 0 + sin? @ + cot? § = V1 + cot? 0 cos’ 6+ sin’ 6 = 1

= \Vcsc? 6

= |csc 6|

1+ cot? = csc® 0

VX2 = x|

Since 7 < 0 < 241, we know that 6 is in quadrant III or IV. Thus, csc 6 is
negative, and by the definition of absolute value, we have

|csc @] = —csc 6.

/

Exer. 1-2: Use common sense to match the variables and
the values. (The triangles are drawn to scale, and the angles

are measured in radians.)

1 : 2
//‘ﬂx IB
Z
y X
o
y

(@) «a
(b) B
(c) x
(d) y
(e) z

(A) 7
(B) 0.28
(C) 24
(D) 1.29
(E) 25

(a) a
(b) B
(c) x
(d) y
(e) z

(A) 23.35
(B) 16
(C) 17
(D) 0.82
(E) 0.76

Exer. 3—10: Find the values of the six trigonometric func-
tions for the angle 6.

3

4

5

3 2

[
7
//la
(%
b
9
0
C

(=)}
W
S
—_

10

)
Q
S
Y Q
Q

Exer. 11-16: Find the exact values of x and y.

//l

60°



13

15

14
* 7
10 R
A\ n
y 3(0°
y
16
4
X
8
X A\ n
y
60°
y

Exer. 17-22: Find the exact values of the trigonometric
functions for the acute angle 6.

17

19

21

23

24

25

26

27

sin 6 = 2 18 cos 6 =
tan6=% 2000t9=%
secc9=g 22 csc 6 =4

Height of a tree A forester, 200 feet from the base of a red-
wood tree, observes that the angle between the ground and
the top of the tree is 60°. Estimate the height of the tree.

Distance to Mt. Fuji The peak of Mt. Fuji in Japan is ap-
proximately 12,400 feet high. A trigonometry student, sev-
eral miles away, notes that the angle between level ground
and the peak is 30°. Estimate the distance from the student
to the point on level ground directly beneath the peak.

Stonehenge blocks Stonehenge in Salisbury Plains,
England, was constructed using solid stone blocks weighing
over 99,000 pounds each. Lifting a single stone required
550 people, who pulled the stone up a ramp inclined at an
angle of 9°. Approximate the distance that a stone was
moved in order to raise it to a height of 30 feet.

Advertising sign height Added in 1990 and removed in
1997, the highest advertising sign in the world was a large
letter I situated at the top of the 73-story First Interstate
World Center building in Los Angeles. At a distance of 200
feet from a point directly below the sign, the angle between
the ground and the top of the sign was 78.87°. Approximate
the height of the top of the sign.

Telescope resolution Two stars that are very close may ap-
pear to be one. The ability of a telescope to separate their

28
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images is called its resolution. The smaller the resolution,
the better a telescope’s ability to separate images in the sky.
In a refracting telescope, resolution 6 (see the figure) can be
improved by using a lens with a larger diameter D. The
relationship between 6 in degrees and D in meters is given
by sin # = 1.22A/D, where A is the wavelength of light
in meters. The largest refracting telescope in the world
is at the University of Chicago. At a wavelength of
A = 550 X 107° meter, its resolution is 0.000 037 69°. Ap-
proximate the diameter of the lens.

Exercise 27

Moon phases The phases of the moon can be described
using the phase angle 6, determined by the sun, the moon,
and Earth, as shown in the figure. Because the moon orbits
Earth, 6 changes during the course of a month. The area of
the region A of the moon, which appears illuminated to
an observer on Earth, is given by A = %WRZ(I + cos 0),
where R = 1080 mi is the radius of the moon. Approxi-

mate A for the following positions of the moon:
(a) 6 = 0° (full moon) (b) 6 = 180° (new moon)

(c) 6 = 90° (first quarter) (d) 6 =103°

Exercise 28
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Exer. 29-34: Approximate to four decimal places, when
appropriate.

29 (a) sin 42° (b) cos 77°
(c) csc123° (d) sec (—190°)
30 (a) tan 282° (b) cot (—81°)
(c) sec 202° (d) sin97°
31 (a) cot (7/13) (b) esc 1.32
(c) cos (—8.534) (d) tan (37/7)
32 (a) sin (—0.11) (b) sec%
(c) tan (—%) (d) cos 2.4m
33 (a) sin 30° (b) sin 30
(c) cos m° (d) cos
34 (a) sin45° (b) sin 45

(c) cos (3m/2)° (d) cos (37/2)

Exer. 35-38: Use the Pythagorean identities to write the
expression as an integer.

35 (a) tan® 4B — sec* 48 (b) 4 tan> B — 4 sec* B
36 (a) csc? 3a — cot? 3« (b) 3 csc? a@ — 3 cot’> @
37 (a) 5sin*> 6 + 5 cos® 6

(b) 5 sin? (6/4) + 5 cos® (0/4)
38 (a) 7sec’ y— 7 tan* y

(b) 7 sec? (y/3) — 7 tan® (y/3)

Exer. 39-42: Simplify the expression.

sin® 6 + cos’® 6 40 co? « — 4
sin 6 + cos 6 co? a —cotaw — 6
2 — tan 6 csc 6+ 1

41

2 csc O — sec 0 (1/sin?> 6) + csc 6

Exer. 43—48: Use fundamental identities to write the first
expression in terms of the second, for any acute angle 6.

43 cot 6, sin 6 44 tan 6, cos 6
45 sec 0, sin 6 46 csc 0, cos 0

47 sin 0, sec 6 48 cos 6, cot 6

Exer. 49-70: Verify the identity by transforming the left-
hand side into the right-hand side.

49 cos Osec 6 =1 50 tan A cot 6 =1
51 sin 6 sec 6 = tan 6 52 sin 6 cot 0 = cos 6

53 csc 6

= cot 0 54 cot 6 sec 6 = csc O

sec 6
55 (1 + cos 260)(1 — cos 26) = sin® 20
56 cos® 26 — sin® 260 = 2 cos* 26 — 1
57 cos?0(sec’ 0 — 1) = sin®> 0
58 (tan O + cot 6) tan O = sec? 0

sin (6/2)
csc (0/2)

cos (0/2)

% sec (/2)

1

60 1 — 2 sin? (6/2) = 2 cos? (0/2) — 1

1

61 (1 + sin 6)(1 — sin 6) = —
sec” 0

62 (1 — sin® 6)(1 + tan®> ) = 1
63 sec 0 — cos 6 = tan 6 sin 6

in 6 +
gy SmOtcosb
cos 60

65 (cot 6 + csc )(tan 6 — sin 6) = sec 6 — cos 6
66 cot O + tan 6 = csc 6 sec O
67 sec® 36 csc®> 30 = sec® 30 + csc® 36

1 + cos? 30
68 — 0 0¥ 5 5230 - 1
sin” 30

69 log csc O = —log sin 6

70 log tan 0 = log sin 6 — log cos 6

Exer. 71-74: Find the exact values of the six trigonometric
functions of 0 if @ is in standard position and P is on the
terminal side.

71 P(4, —3) 72 P(—8, —15)

73 P(=2, —5) 74 P(—1,2)



Exer. 75-80: Find the exact values of the six trigonometric
functions of @ if 0 is in standard position and the terminal
side of @ is in the specified quadrant and satisfies the given
condition.

75 II; onthe line y = —4x

76 1V; on the line 3y + 5x = 0

77 1, on a line having slope %

78 TII; bisects the quadrant

79 III; parallel to the line 2y — 7x + 2 =0

80 II; parallel to the line through A(1, 4) and B(3, —2)

Exer. 81-82: Find the exact values of the six trigonometric
functions of each angle, whenever possible.

81 (a) 90° (b) 0° (c) Tm/2
(b) —90°

(d) 37

82 (a) 180° (c) 2m (d) 5m/2

Exer. 83-84: Find the quadrant containing 0 if the given
conditions are true.

83 (a) cos > 0andsin 6 <0
(b) sin 6 < 0Oandcot >0
(c) csc 8> 0andsec 6 <0

(d) sec 6 <0Oandtan 6 >0

6.3
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84 (a) tan # < Oandcos 6 >0
(b) sec > 0andtan 6 <0
(c) csc 6> 0andcot 6 <0

(d) cos #<0Oandcsc <0

Exer. 85-92: Use fundamental identities to find the values of
the trigonometric functions for the given conditions.

85 tan = —2 and sin >0 86 cot § = 3 and cos 6 < 0
87 sin 0 = —%andsec 06>0 88 cosG=%andsin0<0
89 cos O = —glandsin 60 <0 90 csc @=5andcot 0 <0

91 sec 6 = —4andcsc 6 >0 92 sinHZ%andcos 6<0

Exer. 93-98: Rewrite the expression in nonradical form
without using absolute values for the indicated values of 6.

93 Vsec?0—1; w/2<60<
9% V1+cof 9, 0<6<m

95 V1 + tan’ 6, 37/2<60<2w
96 Vesc2 6 — 1; 3mw/2<60<2w
97 Vsin? (6/2);
98 Veos? (6/2); 0<0<m

2m < 0 <A4m

The domain of each trigonometric function we have discussed is a set of
angles. In calculus and in many applications, domains of functions consist of
real numbers. To regard the domain of a trigonometric function as a subset
of R, we may use the following definition.

Definition of the Trigonometric
Functions of Real Numbers

The value of a trigonometric function at a real number ¢ is its value at
an angle of ¢ radians, provided that value exists.

Using this definition, we may interpret a notation such as sin 2 as either the
sine of the real number 2 or the sine of an angle of 2 radians. As in Section 6.2,
if degree measure is used, we shall write sin 2°. With this understanding,

sin 2 # sin 2°.
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Figure 1
P(x, y)
A(1,0) x

U
Figure 2

0=t1t>0

LY
t
U P(x, y)

To find the values of trigonometric functions of real numbers with a calcula-
tor, we use the radian mode.

We may interpret trigonometric functions of real numbers geometrically
by using a unit circle U—that is, a circle of radius 1, with center at the origin
O of a rectangular coordinate plane. The circle U is the graph of the equation
x*> + y? = 1. Let t be a real number such that 0 < ¢t < 21, and let 6 denote the
angle (in standard position) of radian measure z. One possibility is illustrated
in Figure 1, where P(x, y) is the point of intersection of the terminal side of 0
and the unit circle U and where s is the length of the circular arc from A(1, 0)
to P(x, y). Using the formula s = r0 for the length of a circular arc, with r = 1
and 6 = ¢, we see that

s=r0=1(t) = 1.

Thus, t may be regarded either as the radian measure of the angle 0 or as the
length of the circular arc AP on U.

Next consider any nonnegative real number ¢ If we regard the angle 6 of
radian measure ¢ as having been generated by rotating the line segment OA
about O in the counterclockwise direction, then ¢ is the distance along U that
A travels before reaching its final position P(x, y). In Figure 2 we have illus-
trated a case for t < 2r; however, if > 27, then A may travel around U sev-
eral times in a counterclockwise direction before reaching P(x, y).

If + < 0, then the rotation of OA is in the clockwise direction, and the dis-
tance A travels before reaching P(x, y) is |¢|, as illustrated in Figure 3.

Figure 3
0=11<0

P(x,y)

The preceding discussion indicates how we may associate with each real
number t a unique point P(x, y) on U. We shall call P(x, y) the point on the
unit circle U that corresponds to ¢. The coordinates (x, y) of P may be used
to find the six trigonometric functions of ¢. Thus, by the definition of the
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trigonometric functions of real numbers together with the definition of the
trigonometric functions of any angle (given in Section 6.2), we see that
sint=sin0=l=l=y
r 1
Using the same procedure for the remaining five trigonometric functions gives
us the following formulas.

Definition of the
Trigonometric Functions
in Terms of a Unit Circle

If ¢ is a real number and P(x, y) is the point on the unit circle U that corre-
sponds to ¢, then

sint =y cost =x tan ¢ (if x # 0)

< |x ==

| | .
csct=— (ify#0) secr=— (ifx#0) cott (if y # 0).
y X

Figure 4

-

The formulas in this definition express function values in terms of coor-
dinates of a point P on a unit circle. For this reason, the trigonometric func-
tions are sometimes referred to as the circular functions.

EXAMPLE 1 Finding values of the trigonometric functions

A point P(x, y) on the unit circle U corresponding to a real number 7 is shown in
Figure 4, for m < r < 37/2. Find the values of the trigonometric functions at 7.

SOLUTION  Referring to Figure 4, we see that the coordinates of the point
P(x, y) are
— _3 = _4
x= -3, = —z.
Using the definition of the trigonometric functions in terms of a unit circle
gives us

4 y —3 4

sint =y = —— cost=x=—— tant = —=—%3 =
5 X _g 3

1 11 x -2 3
CSCt=—=—F3=——8eCt=—=—3=——cCott=—=—73= .
y s x5 y 5 4

V4

EXAMPLE 2 Finding a point on U relative to a given point

Let P(r) denote the point on the unit circle U that corresponds to ¢ for
0=1<2mIf Pt) = (%,32), find

@@ P+ m (b)) Pt—m  (c) P(—1)
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Figure 5
(a)

SOLUTION

(a) The point P(¢) on U is plotted in Figure 5(a), where we have also shown
the arc AP of length 7. To find P(t + ), we travel a distance 7 in the coun-
terclockwise direction along U from P(z), as indicated by the blue arc in the
figure. Since 7 is one-half the circumference of U, this gives us the point

Pt + m) = (—g, —33) diametrically opposite P(7).

(b) (c)

Figure 6

@

P(1,0)

=

U Po = (53
t
A(1,0) >x
[—1l
P = (3 -3)

(b) To find P(r — ), we travel a distance 7 in the clockwise direction along

U from P(z), as indicated in Figure 5(b). This gives us P(t — o) = (—é, —g)

Note that P(t + @) = P(t — ).
(c) To find P(—t), we travel along U a distance | —¢| in the clockwise direc-
tion from A(1, 0), as indicated in Figure 5(c). This is equivalent to reflecting

P(t) through the x-axis. Thus, we merely change the sign of the y-coordinate

of P() = (%,2) to obtain P(—1) = (3, —2). /

EXAMPLE 3 Finding special values of the trigonometric functions

Find the values of the trigonometric functions at ¢:

=7 ©r=7

@ r=0 2

SOLUTION

(a) The point P on the unit circle U that corresponds to # = 0 has coordinates
(1, 0), as shown in Figure 6(a). Thus, we let x = 1 and y = 0 in the definition
of the trigonometric functions in terms of a unit circle, obtaining

sin0=y=20 cos0=x=1
y 0 1
tan0 =—=—=0 sec0=—=—=1.
by 1 by 1

Note that csc 0 and cot 0 are undefined, since y = 0 is a denominator.
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Figure 7
AY
O, 1)
P(cos ¢, sin 1)
t
(—1,0) \0 =t

JA(1,0) x

O, —1)

379

6.3 Trigonometric Functions of Real Numbers

(b) Ift = /4, then the angle of radian measure /4 shown in Figure 6(b) bi-
sects the first quadrant and the point P(x, y) lies on the line y = x. Since
P(x, y) is on the unit circle x> + y? = 1 and since y = x, we obtain

X2+ x2=1, or 2x2 = 1.
Solving for x and noting that x > 0 gives us
1 V2
X=——=—.
V22

Thus, P is the point (\f2/2, \6/2). Letting x = V2/2and y = V2/2in the
definition of the trigonometric functions in terms of a unit circle gives us

V2 o T V2 m_N22
4 2 4 2 4 22
T 2 T 2 T \V2/2
csc—=—=1\2 sec— = ——= V2 t—=——=1
4 2 4 V2 4 V22

(c) The point P on U that corresponds to t = /2 has coordinates (0, 1), as
shown in Figure 6(c). Thus, we let x = 0 and y = 1 in the definition of the
trigonometric functions in terms of a unit circle, obtaining

T T T 1 T 0
sin— =1 cos— =20 csc—=—=1 cot— =—=0.
2 2 2 1 2 1
The tangent and secant functions are undefined, since x = 0 is a denominator
in each case. V4

A summary of the trigonometric functions of special angles appears in
Appendix IV.

We shall use the unit circle formulation of the trigonometric functions to
help obtain their graphs. If ¢ is a real number and P(x, y) is the point on the unit
circle U that corresponds to 7, then by the definition of the trigonometric func-
tions in terms of a unit circle,

X = cost and y = sin t.

Thus, as shown in Figure 7, we may denote P(x, y) by
P(cos ¢, sin t).

If + > 0, the real number # may be interpreted either as the radian measure of
the angle 6 or as the length of arc AP.

If we let  increase from O to 27 radians, the point P(cos ¢, sin t) travels
around the unit circle U one time in the counterclockwise direction. By ob-
serving the variation of the x- and y-coordinates of P, we obtain the next table.
The notation 0 — 77/2 in the first row of the table means that 7 increases from
0 to 7r/2, and the notation (1, 0) — (0, 1) denotes the corresponding variation
of P(cos t, sin ¢) as it travels along U from (1, 0) to (0, 1). If ¢ increases from
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0 to /2, then sin ¢ increases from 0 to 1, which we denote by 0 — 1. More-
over, sin ¢ takes on every value between 0 and 1. If ¢ increases from /2 to m,
then sin ¢ decreases from 1 to 0, which is denoted by 1 — 0. Other entries in
the table may be interpreted in similar fashion.

t P(cos t, sin ¢) cos t sin ¢
a
0%7 (1,0)—(0,1) 1—0 0—1
T
7%77 0,1)—>(—1,0) 0——1 1—0
3
™ (=1,0)— (0, —1) -1 -0 0—-1
37
7%271- (0, =1) —> (1, 0) 0—1 -1 -0

If ¢ increases from 27 to 44, the point P(cos 1, sin ) in Figure 7 traces the
unit circle U again and the patterns for sin ¢ and cos ¢ are repeated—that is,

sin (t + 27) = sin ¢ and cos (t + 27) = cost

for every ¢ in the interval [0, 277]. The same is true if 7 increases from 4 to 677,
from 67 to 87, and so on. In general, we have the following theorem.

Theorem on Repeated
Function Values for sin and cos

If n is any integer, then

sin (r + 2@n) = sint and cos (t + 27@n) = cos t.

The repetitive variation of the sine and cosine functions is periodic in the sense
of the following definition.

Definition of Periodic Function

A function fis periodic if there exists a positive real number k such that

ft + k) = f(2)

for every ¢ in the domain of f. The least such positive real number &, if it
exists, is the period of f.

You already have a common-sense grasp of the concept of the period of a
function. For example, if you were asked on a Monday “What day of the week
will it be in 15 days?” your response would be “Tuesday” due to your under-
standing that the days of the week repeat every 7 days and 15 is one day more



x y =sinx
0 0
2
T V2,
4 2
= 1
2
3 2
3w N2
4 2
T 0
5 2
Smol M2,
4 2
3
— -1
2
; —
- — = —0.7
4
2 0
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than two complete periods of 7 days. From the discussion preceding the pre-
vious theorem, we see that the period of the sine and cosine functions is 2r.

We may now readily obtain the graphs of the sine and cosine functions.
Since we wish to sketch these graphs on an xy-plane, let us replace the vari-
able 7 by x and consider the equations

y = sin x and Yy = COS X.

We may think of x as the radian measure of any angle; however, in calculus, x
is usually regarded as a real number. These are equivalent points of view, since
the sine (or cosine) of an angle of x radians is the same as the sine (or cosine)
of the real number x. The variable y denotes the function value that corre-
sponds to x.

The table in the margin lists coordinates of several points on the graph of
y = sin x for 0 = x = 277. Additional points can be determined using results
on special angles, such as

sin (/6) = 1/2  and  sin (7/3) = V3/2 = 0.8660.

To sketch the graph for 0 = x = 24, we plot the points given by the table
and remember that sin x increases on [0, 7/2], decreases on [7/2, 7] and
[, 37/2], and increases on [37/2, 277]. This gives us the sketch in Figure 8.
Since the sine function is periodic, the pattern shown in Figure 8 is repeated to
the right and to the left, in intervals of length 2. This gives us the sketch in
Figure 9.

Figure 8

AY

y=sinx, 0 sx<27w

Figure 9
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x y =cosx
0 1
V2
T YL 07
4 2
ar
— 0
2
3 2
4 2
—1
5 V2
A Y
4 2
3
— 0
2
7 2
4 2
21 1

We can use the same procedure to sketch the graph of y = cos x. The table
in the margin lists coordinates of several points on the graph for 0 = x = 2.
Plotting these points leads to the part of the graph shown in Figure 10. Re-
peating this pattern to the right and to the left, in intervals of length 27, we ob-
tain the sketch in Figure 11.

Figure 10
y

y=cosx, 0=x<27w

Figure 11

=Y

The part of the graph of the sine or cosine function corresponding to
0 = x = 2 is one cycle. We sometimes refer to a cycle as a sine wave or a
cosine wave.

The range of the sine and cosine functions consists of all real numbers
in the closed interval [—1, 1]. Since csc x = 1/sinx and sec x = 1/cos x, it
follows that the range of the cosecant and secant functions consists of all real
numbers having absolute value greater than or equal to 1.

As we shall see, the range of the tangent and cotangent functions consists
of all real numbers.

Before discussing graphs of the other trigonometric functions, let us es-
tablish formulas that involve functions of —¢ for any ¢. Since a minus sign is
involved, we call them formulas for negatives.

Formulas for Negatives

sin(—f) = —sint cos(—f) =cost tan(—f) = —tant

csc (—1) = —csct sec(—f) =sect cot(—f) = —cott
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Figure 12 PROOFS Consider the unit circle U in Figure 12. As ¢ increases from O to 277,
. the point P(x, y) traces the unit circle U once in the counterclockwise direction
and the point Q(x, —y), corresponding to —z, traces U once in the clockwise
direction. Applying the definition of the trigonometric functions of any angle

(with » = 1), we have
P(x,y)

r ALO sin(—7) = —y = —sin¢

cos (—t) =x = cost

U Q(-xv 7/\) —
tan (—1) = A N
X X

The proofs of the remaining three formulas are similar. /

In the following illustration, formulas for negatives are used to find an
exact value for each trigonometric function.

ILLUSTRATION Use of Formulas for Negatives

B sin (—45°) = —sin45° = ———

°ls

B cos (—30°) = cos 30° =

H tan <—?7T> = —tan <%> = -3

B csc(—30°) = —csc30° = —2

V3
2

B sec (—60°) = sec60° =2

s g) e (d)

We shall next use formulas for negatives to verify a trigonometric identity.

EXAMPLE 4 Using formulas for negatives to verify an identity

Verify the following identity by transforming the left-hand side into the right-
hand side:

sin (—x) tan (—x) + cos (—x) = sec x
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SOLUTION

We may proceed as follows:

sin (—x) tan (—x) + cos (—x) = (—sin x)(—tan x) + cos x

. s x
sSin x

formulas for negatives

= + cos x tangent identity
COS X
sin® x .
= + cos x multiply
COS X
sinx + cos® x
= add terms
COS X
1 -
= Pythagorean identity
CoS x
= secx reciprocal identity

/

We may use the formulas for negatives to prove the following theorem.

Theorem on Even and
0dd Trigonometric Functions

(1) The cosine and secant functions are even.

(2) The sine, tangent, cotangent, and cosecant functions are odd.

Figure 13

sine is odd

PROOFS  We shall prove the theorem for the cosine and sine functions. If
f(x) = cos x, then

f(—=x) = cos (—x) = cos x = f(x),

which means that the cosine function is even.
If f(x) = sin x, then

f(=x) = sin (—x) = —sinx = —f(x).
Thus, the sine function is odd. V4
Since the sine function is odd, its graph is symmetric with respect to the

origin (see Figure 13). Since the cosine function is even, its graph is symmet-
ric with respect to the y-axis (see Figure 14).

Figure 14 cosine is even
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By the preceding theorem, the tangent function is odd, and hence the
graph of y = tan x is symmetric with respect to the origin. The table in the
margin lists some points on the graph if —7/2 < x < /2. The corresponding
points are plotted in Figure 15. The values of tan x near x = /2 require
special attention. If we consider tan x = sin x/cos x, then as x increases to-
ward 7r/2, the numerator sin x approaches 1 and the denominator cos x ap-
proaches 0. Consequently, tan x takes on large positive values. Following are some
approximations of tan x for x close to 7/2 = 1.5708:

tan 1.57000 =  1,255.8
tan 1.57030 = 2,014.8
tan 1.57060 =  5,093.5
tan 1.57070 = 10,381.3
tan 1.57079 = 158,057.9

Notice how rapidly tan x increases as x approaches /2. We say that tan x in-
creases without bound as x approaches /2 through values less than /2.
Similarly, if x approaches — /2 through values greater than — /2, then tan x
decreases without bound. We may denote this variation using the notation in-
troduced for rational functions in Section 4.5:

-
as x—>? , tanx—>®

ot
as x— —? , tanx — —

This variation of tan x in the open interval (—/2, 7/2) is illustrated in Fig-
ure 16. This portion of the graph is called one branch of the tangent. The lines
x = —m/2 and x = /2 are vertical asymptotes for the graph. The same pat-
tern is repeated in the open intervals (—3/2, —7/2), (7/2,3w/2), and
(37/2, 57r/2) and in similar intervals of length 77, as shown in the figure. Thus,
the tangent function is periodic with period .

Figure16 y = tanx

=Y

=2 3
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We may use the graphs of y = sinx, y = cosx, and y = tan x to help
sketch the graphs of the remaining three trigonometric functions. For exam-
ple, since csc x = 1/sinx, we may find the y-coordinate of a point on the
graph of the cosecant function by taking the reciprocal of the corresponding
y-coordinate on the sine graph for every value of x except x = 7rn for any in-
teger n. (If x = 7n, sinx = 0, and hence 1/sin x is undefined.) As an aid to
sketching the graph of the cosecant function, it is convenient to sketch the
graph of the sine function (shown in red in Figure 17) and then take recipro-
cals to obtain points on the cosecant graph.

Figure17 y = cscx,y = sinx

AY

=2 —ar
I
I
I
I
I
I
I
I

Notice the manner in which the cosecant function increases or decreases
without bound as x approaches mn for any integer n. The graph has vertical
asymptotes x = 7rn, as indicated in the figure. There is one upper branch of
the cosecant on the interval (0, 77) and one lower branch on the interval
(77, 27m)—together they compose one cycle of the cosecant.

Since sec x = 1/cos x and cot x = 1/tan x, we may obtain the graphs of
the secant and cotangent functions by taking reciprocals of y-coordinates of
points on the graphs of the cosine and tangent functions, as illustrated in Fig-
ures 18 and 19.

Figure18 y = secx, y = cosx




6.3 Trigonometric Functions of Real Numbers 387

Figure19 y = cotx, y = tanx
AY

0
3
3
——————--3
[\
3
w
3
N
3
=Y

A graphical summary of the six trigonometric functions and their inverses
(discussed in Section 7.6) appears in Appendix III.

We have considered many properties of the six trigonometric functions of
x, where x is a real number or the radian measure of an angle. The following
chart contains a summary of important features of these functions (n denotes
an arbitrary integer).

Summary of Features of the Trigonometric Functions and Their Graphs

Feature y =sinx y =cosx y = tanx y = cotx y = secx y =cscx
y y y y y LY
T I I I T I I ] !
T I I T I I j I I ! 'Ul
1 1 | | 1 | I\ 4 /1 | ! T !
Graph D N N I 74 N :k IR R
(one N 7 R AEH I 2 PN e 7/ A R R R N i R R R (R AR S e
. 2| I I 1 I [ I I 1 I
period) I I I I I I I 1 I
- | | T | [ - [ ! I '
i - ™ I,ﬂ' :0 I_ : .;Txlzz :377 x=|—7r x:|7r
x=-3 X=5 X = X = x=-3 ZXZT x=0
Domain R R x#5+mn X # mn x#5+mn X # mn
Vertical o B - B
asymptotes none none X =5+mn X = Tmn X =5+mn X =Tn
Range [—1,1] [—1,1] R R (=00, =1] U [1, ) (=20, —=1] U [1, )
. T w
X-1ntercepts mn 5t mn mNn 5 tmn none none
y-intercept 0 1 0 none 1 none
Period 27 27 T T 2 2
Even or odd odd even odd odd even odd
Symmetry origin y-axis origin origin y-axis origin
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EXAMPLE 5 Investigating the variation of cscx

Investigate the variation of csc x as

B N T m
X—mT, x—, x%;, and x—— .

6

SOLUTION  Referring to the graph of y = csc x in Figure 20 and using our
knowledge of the special values of the sine and cosecant functions, we obtain
the following:

as x— 7, sinx— 0 (through positive values) and cscx— o

as x— ', sinx— 0 (through negative values) and cscx— —
T .

as x%;, sinx— 1 and cscx—1
Tt 1

as x—— , sinx—>— and cscx—2
6 2

Figure 20

y =cscx,y = sinx

AY

EXAMPLE 6 Solving equations and inequalities
that involve a trigonometric function
Find all values of x in the interval [ —277, 277] such that
(a) cosx=% (b) COSX>% (c) cosx<%
SOLUTION  This problem can be easily solved by referring to the graphs of

y=cosx and y = %, sketched on the same xy-plane in Figure 21 for
27 =x=2m.
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Figure 21

L N e
Yy = COS X

(a) The values of x such that cos x = % are the x-coordinates of the points at
which the graphs intersect. Recall that x = 7/3 satisfies the equation. By
symmetry, x = —1r/3 is another solution of cos x = % Since the cosine func-

tion has period 2, the other values of x in [ —27r, 277] such that cos x = % are

5
—%4-277:?# and %—2772

Rk
=

(b) The values of x such that cos x > % can be found by determining where
the graph of y = cos x in Figure 21 lies above the line y = % This gives us the

x-intervals
S T T S
-2, ——— -, d —, 2.
[ 7T’ 3 )’ < 3 ' 3)’ an <3 ’ 77-]

(c) To solve cos x < %, we again refer to Figure 21 and note where the graph
of y = cos x lies below the line y = % This gives us the x-intervals

S T T Sm
—_, = and —,— ]
3 3 3°3

Another method of solving cos x < % is to note that the solutions are the
open subintervals of [ —2r, 277] that are not included in the intervals obtained
in part (b). V4

We have now discussed two different approaches to the trigonometric
functions. The development in terms of angles and ratios, introduced in Sec-
tion 6.2, has many applications in the sciences and engineering. The definition
in terms of a unit circle, considered in this section, emphasizes the fact that the
trigonometric functions have domains consisting of real numbers. Such func-
tions are the building blocks for calculus. In addition, the unit circle approach
is useful for discussing graphs and deriving trigonometric identities. You
should work to become proficient in the use of both formulations of the
trigonometric functions, since each will reinforce the other and thus facilitate
your mastery of more advanced aspects of trigonometry.
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6.3 Exercises

Exer. 1-4: A point P(x, y) is shown on the unit circle U
corresponding to a real number ¢. Find the values of the
trigonometric functions at z.

AY

17° 17 t
A .
o X
U
2 AY
)
t -
0 x
U
3 AY
0 ] =
) CEI

QS
=Y

Exer. 5-8: Let P(f) be the point on the unit circle U that
corresponds to ¢. If P(¢) has the given rectangular coor-
dinates, find

@ Pt+m  (b) Pe—m (© P(—t) @ P(—t—m)
5 (3.3) 6 (-5 %)
7 (=45 %) 8 (% —%)

Exer. 9-16: Let P be the point on the unit circle U that
corresponds to ¢. Find the coordinates of P and the exact
values of the trigonometric functions of ¢, whenever possible.

9 (a) 2 (b) —3m
10 (a) —7 (b) 67

11 (a) 3m/2 (b) —7m/2
12 (a) 57/2 (b) —m/2
13 (a) 97/4 (b) —5m/4
14 (a) 3m/4 (b) —7m/4
15 (a) Sm/4 (b) —m/4
16 (a) 7m/4 (b) —3m/4

Exer. 17-20: Use a formula for negatives to find the ex-
act value.

17 (a) sin (—90°) (b) cos(—%) (c) tan (—45°)

18 (a) sin <—377T) (b) cos (—225°) (c) tan (—m)

19 (a) cot <—%T> (b) sec (—180°)  (c) csc <—3777>



20 (a) cot (—225°)  (b) sec <_T7T> (c) csc (—45%)

Exer. 21-26: Verify the identity by transforming the left-
hand side into the right-hand side.

21 sin (—x) sec (—x) = —tan x
22 csc (—x) cos (—x) = —cot x
t J— —

23M=cosx 24L(x)=—cscx

csc (—x) tan (—x)

1 .

25 ———— — tan (—x) sin (—x) = cos x

cos (—x)
26 cot (—x) cos (—x) + sin (—x) = —csc x

Exer. 27-38: Complete the statement by referring to a
graph of a trigonometric function.

27 (a) Asx— 0%, sinx— ___
(b) Asx— (—7/2)",sinx— __
28 (a) Asx—>m,sinx—> ___
(b) Asx— (7/6)",sinx— ___
29 (a) Asx— (m/4)*, cosx —
(b) Asx —>m",cosx—> ___
30 (a) Asx— 0", cosx —
(b) Asx— (—m/3)",cos x —> ___
31 (a) Asx—(w/4)", tanx — ___
(b) Asx — (w/2)*, tan x — ___
32 (a) Asx— 0" tanx —
(b) Asx— (—m/2) ,tanx — ___
33 (a) Asx— (—7/4),cotx — ___
(b) Asx = 0", cotx — ___
34 (a) Asx— (m/6)", cotx — __
(b) Asx > 7 ,cotx —> ___
35 (a) Asx— (7/2) ,secx — ___
(b) Asx— (m/4)*,secx —
36 (a) Asx— (m/2)",secx —>

(b) Asx—>0",secx—
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37 (a) Asx—>0,cscx—
(b) Asx— (m/2)*,cscx —
38 (a) Asx— 7wt cscx—
(b) Asx— (m/4) ", cscx —
Exer. 39-46: Refer to the graph of y = sinx or y = cos x to

find the exact values of x in the interval [0, 477] that satisfy
the equation.

39 sinx = —1 40 sinx =1

41 sinx =1 42 sinx = —\/2/2

43 cosx =1 44 cos x = —1

45 cos x = \V2/2 46 cos x = —51

Exer. 47-50: Refer to the graph of y = tan x to find the
exact values of x in the interval (—/2, 377/2) that satisfy
the equation.

47 tan x = 1 48 tan x = V3

49 tanx =0 50 tanx = —1/V3

Exer. 51-54: Refer to the graph of the equation on the
specified interval. Find all values of x such that for the real
number a, (a)y =a, (b)y >a, and (¢) y <a.

51 y =sinx; [—2m 2w, a= %
52 y =cosx; [0, 4m]; a=\3/2

53 y=cosx; [—2m 27, a —51

—\V2/2

54 y =sinx; [0, 47]; a
Exer. 55-62: Use the graph of a trigonometric function to

sketch the graph of the equation without plotting points.
55 y =2 + sinx 56 y =3 + cos x

57 y=rcosx — 2 58 y =sinx — 1

59 y =1+ tan x 60 y=cotx — 1

61 y=secx — 2 62 y=1+cscx

Exer. 63—-66: Find the intervals between —27 and 27 on
which the given function is (a) increasing or (b) decreasing.

63 secant 64 cosecant

65 tangent 66 cotangent
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67 Practice sketching the graph of the sine function, taking dif- 73 Temperature-humidity relationship On March 17, 1981, in
ferent units of length on the horizontal and vertical axes. Tucson, Arizona, the temperature in degrees Fahrenheit
Practice sketching graphs of the cosine and tangent functions could be described by the equation

in the same manner. Continue this practice until you reach
the stage at which, if you were awakened from a sound sleep
in the middle of the night and asked to sketch one of these graphs,

T(r) = —12 cos <1—7; t> + 60,
you could do so in less than thirty seconds.

while the relative humidity in percent could be expressed by
68 Work Exercise 67 for the cosecant, secant, and cotan-

fi ions.
gent functions H() = 20 cos ( 1_7'; t) + 60,

where ¢ is in hours and ¢ = 0 corresponds to 6 A.M.
Exer. 69-72: Use the figure to approximate the following to

one decimal place. (a) Construct a table that lists the temperature and relative
humidity every three hours, beginning at midnight.

LY (b) Determine the times when the maximums and mini-
mums occurred for 7 and H.

(c) Discuss the relationship between the temperature and
relative humidity on this day.

74 Robotic arm movement Trigonometric functions are used
extensively in the design of industrial robots. Suppose that
a robot’s shoulder joint is motorized so that the angle 6
increases at a constant rate of 7r/12 radian per second from
an initial angle of 6 = 0. Assume that the elbow joint is
always kept straight and that the arm has a constant length
of 153 centimeters, as shown in the figure.

oY

6

|
o
~

(a) Assume that A = 50 cm when 6 = 0. Construct a table
that lists the angle 6 and the height & of the robotic
hand every second while 0 < 0 = 77/2.

|
I
o0

(b) Determine whether or not a constant increase in the
5 angle 6 produces a constant increase in the height of
the hand.

(c) Find the total distance that the hand moves.
69 (a) sin 4 (b) sin (—=1.2) Exercise 74
(c) All numbers ¢ between 0 and 27 such that sin # = 0.5

70 (a) sin2 (b) sin (—2.3)
(c) All numbers  between 0 and 277 such that sin = —0.2

71 (a) cos 4 (b) cos (—1.2)

(c) All numbers ¢ between 0 and 27 such that cos = —0.6

72 (a) cos 2 (b) cos (—2.3)

(c) All numbers ¢ between 0 and 27 such that cos t = 0.2
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In previous sections we calculated special values of the trigonometric func-
tions by using the definition of the trigonometric functions in terms of either
an angle or a unit circle. In practice we most often use a calculator to approxi-
mate function values.

We will next show how the value of any trigonometric function at an angle
of 6 degrees or at a real number ¢ can be found from its value in the
f-interval (0°, 90°) or the t-interval (0, 7/2), respectively. This technique is
sometimes necessary when a calculator is used to find all angles or real num-
bers that correspond to a given function value.

We shall make use of the following concept.

Definition of Reference Angle

Let 6 be a nonquadrantal angle in standard position. The reference angle
for 0 is the acute angle 6; that the terminal side of 6 makes with the x-axis.

Figure 1 Reference angles

(a) Quadrant I

AY

VO

—
X

I
S

Figure 1 illustrates the reference angle 6y for a nonquadrantal angle 6,
with 0° < 6 < 360° or 0 < 6 < 27, in each of the four quadrants.

(b) Quadrant IT (c) Quadrant III (d) Quadrant IV

HR

4

| Y AY AY

¥ Y Y
N

AN

=Y
Y
Y

LA Or

0, = 180° — 0 O = 0 — 180° fr = 360° — 0

=7—0 =60— =2m—0

The formulas below the axes in Figure 1 may be used to find the degree
or radian measure of 6z when 6 is in degrees or radians, respectively. For a
nonquadrantal angle greater than 360° or less than 0°, first find the cotermi-
nal angle 6 with 0° < 6 < 360° or 0 < 0 < 277, and then use the formulas in
Figure 1.

EXAMPLE 1 Finding reference angles

Find the reference angle 6; for 6, and sketch 6 and 6 in standard position on
the same coordinate plane. 5
T

() =315 (b) 6=-240° (9 6="" (d) 6=4
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Figure 2
a
(@) LY
AR
N =45 %
b
(b) LY
O = 60 120°
N
NI
0= —240°
c
() AV
_ 37
0= 6
\ _»
/ x
HR::%
d
(d) LY
Og =4 —m 0=4
I
X
Figure 3
AY
P(x,y)
1y |
1y
Or |
(0] X i
Q(x, 0)

SOLUTION

(a) The angle § = 315° is in quadrant IV, and hence, as in Figure 1(d),

The angles 6 and 6 are sketched in Figure 2(a).

Or = 360° — 315° = 45°.

(b) The angle between 0° and 360° that is coterminal with § = —240° is

which is in quadrant II. Using the formula in Figure 1(b) gives

The angles 6 and 6 are sketched in Figure 2(b).

(c) Since the angle 6§ = 577/6 is in quadrant II, we have

—240° + 360° = 120°,

Or = 180° — 120° = 60°.

as shown in Figure 2(c).

(d) Since m < 4 < 37/2, the angle # = 4 is in quadrant III. Using the for-
mula in Figure 1(c), we obtain

The angles are sketched in Figure 2(d).

0R=4_7T.

/

We shall next show how reference angles can be used to find values of the
trigonometric functions.
If 6 is a nonquadrantal angle with reference angle 6, then we have
0° < 6r < 90° or 0 < 6y < 7/2. Let P(x, y) be a point on the terminal side
of 6, and consider the point Q(x,0) on the x-axis. Figure 3 illustrates a

=

B4
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typical situation for 6 in each quadrant. In each case, the lengths of the sides
of triangle OQP are

d0, Q) = |x|, d(Q,P)=1|y|, and d(O,P) = Vx*+y’ =r.

We may apply the definition of the trigonometric functions of any angle
and also use triangle OQP to obtain the following formulas:

|sin 0| = S =m=u=sin0R
r |r| r
| R e N '
cos 0| = T, = cos by
|tan 6| = A ZuztaneR
x| x|

These formulas lead to the next theorem. If 8 is a quadrantal angle, the defini-
tion of the trigonometric functions of any angle should be used to find values.

Theorem on Reference Angles

If 6 is a nonquadrantal angle in standard position, then to find the value of
a trigonometric function at 6, find its value for the reference angle 6 and
prefix the appropriate sign.

Figure 4

The “appropriate sign” referred to in the theorem can be determined from the
table of signs of the trigonometric functions given on page 371.

EXAMPLE 2 Using reference angles

Use reference angles to find the exact values of sin 6, cos 6, and tan 6 if

@ 0=2"

= 315°
= () 6=315

SOLUTION

(a) The angle # = 57/6 and its reference angle 6 = /6 are sketched in
Figure 4. Since 6 is in quadrant II, sin 6 is positive and both cos 6 and tan 6
are negative. Hence, by the theorem on reference angles and known results
about special angles, we obtain the following values:

siIn— = +sm1——
6 6 2
S T V3
COS— = —CoOS— = ———
6 6 2
5 T V3
tan— = —tan— = ———

(continued)
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(b) The angle 6 = 315° and its reference angle 6z = 45° are sketched in Fig-
Figure 5 ure 5. Since 6 is in quadrant IV, sin 8 < 0, cos 8 > 0, and tan 6 < 0. Hence,
by the theorem on reference angles, we obtain

4’ V2
sin 315° = — sin45° = ———
" 315/0\ \/2
2
N O = 45° 'y cos 315° = + cos45° = -
tan 315° = — tan45° = —1. V4

If we use a calculator to approximate function values, reference angles are
usually unnecessary. As an illustration, to find sin 210°, we place the calcula-
tor in degree mode and obtain sin 210° = —0.5, which is the exact value.
Using the same procedure for 240°, we obtain a decimal representation:

sin 240° = —0.8660

A calculator should not be used to find the exact value of sin 240°. In this case,
we find the reference angle 60° of 240° and use the theorem on reference an-
gles, together with known results about special angles, to obtain

V3

sin 240° = —sin 60° = —T.

Let us next consider the problem of solving an equation of the follow-
ing type:

Problem: If 0 is an acute angle and sin 6 = 0.6635, approximate 6.

Most calculators have a key labeled that can be used to help solve the
equation. With some calculators, it may be necessary to use another key or a
keystroke sequence such as (refer to the user manual for your cal-
culator). We shall use the following notation when finding 6, where 0 = k = 1:

if sin@=k then 0 =sin"'k

This notation is similar to that used for the inverse function f~! of a function
fin Section 5.1, where we saw that under certain conditions,

if f(x) =y, then x=7"'(y).

For the problem sin 6§ = 0.6635, fis the sine function, x = 6, and y = 0.6635.
The notation sin~' is based on the inverse trigonometric functions discussed
in Section 7.6. At this stage of our work, we shall regard sin~' simply as an
entry made on a calculator using a key. Thus, for the stated problem,
we obtain

0 = sin!' (0.6635) = 41.57° = 0.7255.

As indicated, when finding an angle, we will usually round off degree measure
to the nearest 0.01° and radian measure to four decimal places.
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Similarly, given cos 8 = k or tan 6 = k, where 6 is acute, we write

0 =cos 'k or 0=tan 'k

to indicate the use of a{ C0S™ Jor ( TAN"' ) key on a calculator.
Given csc 6, sec 6, or cot 6, we use a reciprocal relationship to find 6, as
indicated in the following illustration.

Finding Acute Angle Solutions of Equations with a Calculator
Equation Calculator solution (degree and radian)
B sinf =05 6 = sin”' (0.5) = 30° = 0.5236
B cosf=05 0 = cos ! (0.5) = 60° = 1.0472
B tan6=05 0 = tan! (0.5) = 26.57° = 0.4636
B ocsch=2 6=sin'(}) =300 =05236
B osech=2 6=cos' () =600 = 10472
B ocotf=2 0 =tan"' () =2657°=0.4636

The same technique may be employed if 6 is any angle or real number.
Thus, using the key, we obtain, in degree or radian mode,

6 = sin™! (0.6635) = 41.57° = 0.7255,

which is the reference angle for 6. If sin 6 is negative, then a calculator gives
us the negative of the reference angle. For example,

sin”! (—0.6635) = —41.57° = —0.7255.

Similarly, given cos 6 or tan 6, we find 6 with a calculator by using
(cos' Jor( TAN" ], respectively. The interval containing @ is listed in the next
chart. It is important to note that if cos 6 is negative, then 0 is not the negative
of the reference angle, but instead is in the interval 7/2 < 6 < 7, or
90° < 6 = 180°. The reasons for using these intervals are explained in Sec-
tion 7.6. We may use reciprocal relationships to solve similar equations in-
volving csc 6, sec 6, and cot 6.

Equation Values of k Calculator solution Interval containing 0 if a calculator is used
. . T T
sin 0 = k -l1=k=1 0=sin"'k —TSHST, or —90° = 6 = 90°
cos 6 =k —-1=k=1 0 =cos 'k 0=60=m, or 0° = 6= 180°
T T
tan 0 = k any k 0 =tan" 'k —7< 9<7, or —90° < 6 < 90°

The following illustration contains some specific examples for both de-
gree and radian modes.
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ILLUSTRATION Finding Angles with a Calculator

Equation Calculator solution (degree and radian)
B sinf=—-05 0 =sin"' (=0.5) = =30° = —0.5236
B cosf=—-05 0 = cos™! (—0.5) = 120° =~ 2.0944

B tan6=—-05 0 = tan"! (—0.5) = —26.57° = —0.4636

Figure 6 When using a calculator to find 6, be sure to keep the restrictions on 6 in
mind. If other values are desired, then reference angles or other methods may

AY be employed, as illustrated in the next examples.

o= 180 . Or EXAMPLE 3 Approximating an angle with a calculator
' /\x 155.2
—>

X If tan 6 = —0.4623 and 0° = 6 < 360°, find 0 to the nearest 0.1°.

SOLUTION  As pointed out in the preceding discussion, if we use a calcu-
lator (in degree mode) to find 6 when tan 6 is negative, then the degree mea-
sure will be in the interval (—90°, 0°). In particular, we obtain the following:

Figure 7 6 = tan' (—0.4623) = —24.8°

AY Since we wish to find values of 6 between 0° and 360°, we use the (ap-

proximate) reference angle 6y = 24.8°. There are two possible values of 6 such

that tan 6 is negative—one in quadrant II, the other in quadrant IV. If 6 is in

\ > quadrant IT and 0° = 0 < 360°, we have the situation shown in Figure 6, and
X

0 = 180° — 6r = 180° — 24.8° = 155.2°.

0 = 360° — 6y

~3352° /]
NS

If 6 is in quadrant IV and 0° = 6 < 360°, then, as in Figure 7,

0 = 360° — 6 = 360° — 24.8° = 335.2°. /
Figure 8

y EXAMPLE 4 Approximating an angle with a calculator
Op=m— 0 If cos 6 = —0.3842 and 0 = 6 < 2, find 6 to the nearest 0.0001 radian.
~ 1.1765 <\0’~V 1.9651

- SOLUTION  If we use a calculator (in radian mode) to find # when cos 6 is
x negative, then the radian measure will be in the interval [0, 7r]. In particular,
we obtain the following (shown in Figure 8):

0 = cos™' (—0.3842) =~ 1.965 137489

Figure 9 Since we wish to find values of 6 between 0 and 27, we use the (approxi-
mate) reference angle

AY B
O = m— 6 ~=1.176455165.

v : Z; 8(?)]{ There are two possible values of 6 such that cos 6 is negative—the one we
\ G found in quadrant II and the other in quadrant IIL. If € is in quadrant III, then
X

Or 0 =7+ 6 = 4.318047819,

-

as shown in Figure 9. 7/
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Exer. 1-6: Find the reference angle 6, if 0 has the given

measure.
1 (a) 240°  (b) 340°
2 (a) 165°  (b) 275°
3 (a) 3w/4  (b) 4m/3
4 (a) Tm/4 (b)) 2m/3
5 (a) 3 (b) —2

6 (a) 6 (b) —4

(c) —202°
(c) —110°
(c) —m/6
(c) —3m/4
(c) 55
(c) 45

Exer. 7—-18: Find the exact value.

7 (a) sin (27/3)
8 (a) sin 210°
9 (a) cos 150°
10 (a) cos (57/4)
11 (a) tan (57/6)
12 (a) tan 330°
13 (a) cot 120°
14 (a) cot (37/4)
15 (a) sec (27/3)
16 (a) sec 135°
17 (a) csc 240°

18 (a) csc 3m/4)

(b) sin (=5m/4)
(b) sin (—315°)
(b) cos (—60°)
(b) cos (—11m/6)
(b) tan (=m/3)
(b) tan (—225°)
(b) cot (—150°)
(b) cot (—2m/3)
(b) sec (=m/6)
(b) sec (—210°)
(b) csc (—330°)
(b) csc (=2m/3)

(d) —660°
(d) 400°
(d) 9m/4
(d) —237/6
(d) 100

(d) 80

Exer. 19-24: Approximate to three decimal places.

19 (a) sin 73°20’ (b) cos 0.68
20 (a) cos 38°30' (b) sin 1.48
21 (a) tan 21°10’ (b) cot 1.13
22 (a) cot 9°10’ (b) tan 0.75
23 (a) sec 67°50’ (b) csc 0.32
24 (a) csc 43°40’ (b) sec 0.26

Exer. 25-32: Approximate the acute angle 0 to the near-

est (a) 0.01° and (b) 1'.
25 cos 6 = 0.8620

27 tan 6 = 3.7
29 sin 6 = 0.4217

31 sec 60 = 4.246

26 sin 6 = 0.6612

28 cos 6 = 0.8
30 tan 0 = 491
32 csc 0=11

Exer. 33-34: Approximate to four decimal places.

33 (a) sin 98°10’
(d) cot 231°40’
34 (a) sin 496.4°

(d) cot 1030.2°

(b) cos 623.7°
(e) sec 1175.1°
(b) cos 0.65

(e) sec 1.46

(c) tan 3
(f) csc 0.82
(c) tan 105°40’

(f) esc 320°50

Exer. 35-36: Approximate, to the nearest 0.1°, all angles 6
in the interval [0°, 360°) that satisfy the equation.

35 (a) sin # = —0.5640
(c) tan 0 = 2.798
(e) sec 6 = —1.116

36 (a) sin 0 = 0.8225
(c) tan 6§ = —1.5214

(e) sec 6 = 1.4291

(b) cos 6 = 0.7490
(d) cot & = —0.9601
(f) csc 6 =1.485
(b) cos 6 = —0.6604
(d) cot 6 = 1.3752

(f) csc 6 = —2.3179

Exer. 37-38: Approximate, to the nearest 0.01 radian, all
angles 0 in the interval [0, 277) that satisfy the equation.

37 (a) sin 6 = 0.4195
(c) tan = —3.2504
(e) sec 6 = 1.7452

38 (a) sin # = —0.0135
(c) tan 6 = 0.42

(e) sec # = —3.51

(b) cos 6 = —0.1207
(d) cot @ = 2.6815
(f) csc 6 = —4.8521
(b) cos 6 = 0.9235
(d) cot 6 = —2.731

(f) csc 6 =1.258
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39 Thickness of the ozone layer The thickness of the ozone

layer can be estimated using the formula
In Iy — In I = kx sec 6,

where [ is the intensity of a particular wavelength of light
from the sun before it reaches the atmosphere, / is the in-
tensity of the same wavelength after passing through a layer
of ozone x centimeters thick, k is the absorption constant of
ozone for that wavelength, and 6 is the acute angle that the
sunlight makes with the vertical. Suppose that for a wave-
length of 3055 X 107* centimeter with k =~ 1.88, I/I is
measured as 1.72 and 6 = 12°. Approximate the thickness

of the ozone layer to the nearest 0.01 centimeter.

40 Ozone calculations Refer to Exercise 39. If the ozone layer
is estimated to be 0.31 centimeter thick and, for a wave-
length of 3055 X 10~® centimeter, I,/I is measured as 2.05,
approximate the angle the sun made with the vertical at the

time of the measurement.

41 Solarradiation The amount of sunshine illuminating a wall
of a building can greatly affect the energy efficiency of the
building. The solar radiation striking a vertical wall that

faces east is given by the formula

R = R, cos 0 sin ¢,

where R, is the maximum solar radiation possible, 6 is the
angle that the sun makes with the horizontal, and ¢ is the
direction of the sun in the sky, with ¢ = 90° when the sun

is in the east and ¢ = 0° when the sun is in the south.

(a) When does the maximum solar radiation R, strike

the wall?

(b) What percentage of R, is striking the wall when 6 is

equal to 60° and the sun is in the southeast?

6.5

Trigonometric Graphs

y = asin (bx + ¢) and

42

43

44

Meteorological calculations In the mid-latitudes it is some-
times possible to estimate the distance between consecutive
regions of low pressure. If ¢ is the latitude (in degrees),
R is Earth’s radius (in kilometers), and v is the horizontal
wind velocity (in km/hr), then the distance d (in kilometers)
from one low pressure area to the next can be estimated
using the formula

173
d=oml — 2R\
0.52 cos ¢

(a) At a latitude of 48°, Earth’s radius is approximately
6369 kilometers. Approximate d if the wind speed is
45 km/hr.

(b) If v and R are constant, how does d vary as the lati-
tude increases?

Robot’s arm Points on the terminal sides of angles play an
important part in the design of arms for robots. Suppose a
robot has a straight arm 18 inches long that can rotate about
the origin in a coordinate plane. If the robot’s hand is lo-
cated at (18, 0) and then rotates through an angle of 60°,
what is the new location of the hand?

Robot’s arm Suppose the robot’s arm in Exercise 43 can
change its length in addition to rotating about the origin. If
the hand is initially at (12, 12), approximately how many
degrees should the arm be rotated and how much should its
length be changed to move the hand to (—16, 10)?

In this section we consider graphs of the equations

y = acos (bx + ¢)

for real numbers a, b, and c. Our goal is to sketch such graphs without plotting
many points. To do so we shall use facts about the graphs of the sine and co-
sine functions discussed in Section 6.3.

Let us begin by considering the special case ¢ = 0 and b = 1—that is,

y = asinx and Y = acos Xx.

We can find y-coordinates of points on the graphs by multiplying y-coordinates
of points on the graphs of y = sin x and y = cos x by a. To illustrate, if
y = 2sinx, we multiply the y-coordinate of each point on the graph of



Figure 1

B4

y =sinx

6.5 Trigonometric Graphs 401

y = sin x by 2. This gives us Figure 1, where for comparison we also show the
graph of y = sin x. The procedure is the same as that for vertically stretching
the graph of a function, discussed in Section 3.5.

As another illustration, if y = % sin x, we multiply y-coordinates of points
on the graph of y = sin x by % This multiplication vertically compresses the
graph of y = sin x by a factor of 2, as illustrated in Figure 2.

Figure 2

y=12sinx

A 2“y:sin)c y:%sinx
1__
| Il \l | Il | |/ 1 \l

——1I szw N 7 “1+
__2 —+

The following example illustrates a graph of y = a sin x with a negative.

EXAMPLE 1 Sketching the graph of an equation involving sin x

Sketch the graph of the equation y = —2 sin x.

SOLUTION  The graph of y = —2 sinx sketched in Figure 3 can be ob-
tained by first sketching the graph of y = sin x (shown in the figure) and then
multiplying y-coordinates by —2. An alternative method is to reflect the graph
of y = 2 sin x (see Figure 1) through the x-axis.

Figure 3
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For any a # 0, the graph of y = a sin x has the general appearance of one
of the graphs illustrated in Figures 1, 2, and 3. The amount of stretching of the
graph of y = sin x and whether the graph is reflected are determined by the ab-
solute value of a and the sign of a, respectively. The largest y-coordinate | a |
is the amplitude of the graph or, equivalently, the amplitude of the function
fgiven by f(x) = a sin x. In Figures 1 and 3 the amplitude is 2. In Figure 2 the
amplitude is % Similar remarks and techniques apply if y = a cos x.

EXAMPLE 2 Sketching the graph of an equation involving cos x
Find the amplitude and sketch the graph of y = 3 cos x.

SOLUTION By the preceding discussion, the amplitude is 3. As indicated in
Figure 4, we first sketch the graph of y = cos x and then multiply y-coordinates
by 3.

Figure 4

y =3cosx

=Y

/

Let us next consider y = a sin bx and y = a cos bx for nonzero real num-
bers a and b. As before, the amplitude is |a|. If b > 0, then exactly one cycle
occurs as bx increases from 0 to 27 or, equivalently, as x increases from O to
27/b. If b < 0, then —b > 0 and one cycle occurs as x increases from 0
to 27/(—b). Thus, the period of the function f given by f(x) = a sin bx or
f(x) = acos bx is 27/| b|. For convenience, we shall also refer to 27/|b| as
the period of the graph of f. The next theorem summarizes our discussion.

Theorem on
Amplitudes and Periods

If y = a sin bx or y = a cos bx for nonzero real numbers a and b, then the
2

graph has amplitude |a | and period i




Figure 5

y = 3 sin 2x

A [\ ]

\/V’C

Figure 6

— 9 ainly
y = 2sin5x
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We can also relate the role of b to the discussion of horizontally com-
pressing and stretching a graph in Section 3.5. If |b|> 1, the graph of
y = sin bx or y = cos bx can be considered to be compressed horizontally by
a factor b. If 0 < |b| < 1, the graphs are stretched horizontally by a factor 1/b.
This concept is illustrated in the next two examples.

EXAMPLE 3 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of y = 3 sin 2x.

SOLUTION  Using the theorem on amplitudes and periods with a = 3 and
b = 2, we obtain the following:
amplitude: |a| = |3| =3
) 2 20 2T
period: mzmzzzw

Thus, there is exactly one sine wave of amplitude 3 on the x-interval [0, 7].
Sketching this wave and then extending the graph to the right and left gives us
Figure 5. /

EXAMPLE 4 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of y = 2 sin %x.

SOLUTION  Using the theorem on amplitudes and periods with a = 2 and
b = 3, we obtain the following:
amplitude: |a| = |2| =2
. T 2w 2w
period: 7 = =T =4nx
LI I

Thus, there is one sine wave of amplitude 2 on the interval [0, 477]. Sketching
this wave and extending it left and right gives us the graph in Figure 6.

If y = asin bx and if b is a large positive number, then the period 27/b
is small and the sine waves are close together, with b sine waves on the inter-
val [0, 277]. For example, in Figure 5, b = 2 and we have two sine waves on
[0, 247]. If b is a small positive number, then the period 27r/b is large and the
waves are far apart. To illustrate, if y = sin %x, then one-tenth of a sine wave
occurs on [0, 277] and an interval 207 units long is required for one complete
cycle. (See also Figure 6—for y = 2 sin %x, one-half of a sine wave occurs on
[0, 27].)

If b < 0, we can use the fact that sin (—x) = —sin x to obtain the graph
of y = a sin bx. To illustrate, the graph of y = sin (—2x) is the same as the
graph of y = —sin 2x.
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Figure 7

EXAMPLE 5 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of the equation
y = 2 sin (—3x).

SOLUTION  Since the sine function is odd, sin (—3x) = —sin 3x, and we
may write the equation as y = —2 sin 3x. The amplitude is | —2| = 2, and the
period is 27r/3. Thus, there is one cycle on an interval of length 277/3. The
negative sign indicates a reflection through the x-axis. If we consider the inter-
val [0, 27r/3] and sketch a sine wave of amplitude 2 (reflected through the
x-axis), the shape of the graph is apparent. The part of the graph in the inter-
val [0, 277/3] is repeated periodically, as illustrated in Figure 7. /

EXAMPLE 6 Finding an amplitude and a period
Find the amplitude and the period and sketch the graph of y = 4 cos mx.

SOLUTION  The amplitude is |4| = 4, and the period is 277/ 7 = 2. Thus,
there is exactly one cosine wave of amplitude 4 on the interval [0, 2]. Since the
period does not contain the number 7, it makes sense to use integer ticks on
the x-axis. Sketching this wave and extending it left and right gives us the
graph in Figure 8.

Figure 8

AY

y =4 cos 7x

/7

As discussed in Section 3.5, if fis a function and c is a positive real number,
then the graph of y = f(x) + ¢ can be obtained by shifting the graph of
y = f(x) vertically upward a distance c. For the graph of y = f(x) — ¢, we
shift the graph of y = f(x) vertically downward a distance of c. In the next ex-
ample we use this technique for a trigonometric graph.



Figure 9
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EXAMPLE 7 \Vertically shifting a trigonometric graph
Sketch the graph of y = 2 sin x + 3.

SOLUTION It is important to note that y # 2 sin (x + 3). The graph of
y = 2 sin x is sketched in red in Figure 9. If we shift this graph vertically up-
ward a distance 3, we obtain the graph of y = 2 sin x + 3. /

Let us next consider the graph of

y = asin (bx + ¢).

As before, the amplitude is |a|, and the period is 27/|b|. One cycle occurs if
bx + ¢ increases from O to 27r. Hence, we can find an interval containing ex-
actly one sine wave by solving the following inequality for x:

O0==bx+c=27

—c = bx =27 —c subtract ¢
c _ <27T c divide by b
-—— = Xx = — — — divide
b b b Y

The number —c¢/b is the phase shift associated with the graph. The graph of
y = asin (bx + ¢) may be obtained by shifting the graph of y = a sin bx to
the left if the phase shift is negative or to the right if the phase shift is positive.

Analogous results are true for y = a cos (bx + ¢). The next theorem sum-
marizes our discussion.

Theorem on Amplitudes,
Periods, and Phase Shifts

If y = asin (bx + ¢) or y = a cos (bx + ¢) for nonzero real numbers a and
b, then

2
(1) the amplitude is | a|, the period is |777, and the phase shift is — g;
(2) an interval containing exactly one cycle can be found by solving the

inequality

0=bx+c=2m

We will sometimes write
y = asin (bx + ¢) in the equivalent

formy = asin |:b<x + (>:|
b

EXAMPLE 8 Finding an amplitude, a period, and a phase shift

Find the amplitude, the period, and the phase shift and sketch the graph of

T
= 3sin | 2x + —).
y s1n<x 2)
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Figure 10

Figure 11

y = 3 sin (2x + %)

4

y=2cos(Bx — m

SOLUTION  The equation is of the form y = asin (bx + ¢) with a = 3,
b =2, and ¢ = m/2. Thus, the amplitude is |a| = 3, and the period is
2@/|b| = 27/2 = m.

By part (2) of the theorem on amplitudes, periods, and phase shifts, the
phase shift and an interval containing one sine wave can be found by solving
the following inequality:

0=2x+—=27
2
T 37 T
—— = 2x = — subtract —
2 2 2
T 37
- = X = — divide by 2
4 4

Thus, the phase shift is — /4, and one sine wave of amplitude 3 occurs on the
interval [ — /4, 37/4]. Sketching that wave and then repeating it to the right
and left gives us the graph in Figure 10.

EXAMPLE 9 Finding an amplitude, a period, and a phase shift

Find the amplitude, the period, and the phase shift and sketch the graph of
y = 2cos (3x — m).

SOLUTION  The equation has the form y = a cos (bx + ¢) with a = 2,
b =3, and ¢ = —m. Thus, the amplitude is |a| = 2, and the period is
27/|b| = 2m/3.

By part (2) of the theorem on amplitudes, periods, and phase shifts, the
phase shift and an interval containing one cycle can be found by solving the
following inequality:

0==3x—7w7=2m

T = 3x =37 addw

T
3= X <7  divide by 3
Hence, the phase shift is /3, and one cosine-type cycle (from maximum to
maximum) of amplitude 2 occurs on the interval [77/3, 7r]. Sketching that part
of the graph and then repeating it to the right and left gives us the sketch in
Figure 11.

If we solve the inequality

aw a
——=3x-T7="

2

instead of 0=3x—7=2m

we obtain the interval 7/6 = x = 57/6, which gives us a cycle between
x-intercepts rather than a cycle between maximums. /



6.5 Trigonometric Graphs 407

EXAMPLE 10 Finding an equation for a sine wave
Express the equation for the sine wave shown in Figure 12 in the form
y = asin (bx + ¢)

for a > 0, b > 0, and the least positive real number c.

Figure 12

AY

SOLUTION  The largest and smallest y-coordinates of points on the graph
are 5 and —5, respectively. Hence, the amplitude is a = 5.

Since one sine wave occurs on the interval [—1, 3], the period has value
3 — (—1) = 4. Hence, by the theorem on amplitudes, periods, and phase
shifts (with b > 0),

2 .
o =4 or, equivalently, b=—.

The phase shift is —c/b = —c/(1r/2). Since c is to be positive, the phase
shift must be negative; that is, the graph in Figure 12 must be obtained by
shifting the graph of y = 5 sin [(77/2)x] to the left. Since we want ¢ to be as
small as possible, we choose the phase shift —1. Hence,

¢ _
/2

-1 or, equivalently, c

Thus, the desired equation is

T T
y=5sin|—x+—]).
2 2 (continued)
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There are many other equations for the graph. For example, we could use
the phase shifts —5, —9, —13, and so on, but these would not give us the least
positive value for ¢. Two other equations for the graph are

T 3 T 3
= 1 J— R = — 1 J— +—.
y 5s1n<2x 2) and y 5s1n<2x 2)

However, neither of these equations satisfies the given criteria for a, b, and c,
since in the first, ¢ < 0, and in the second, ¢ < 0 and ¢ does not have its least
positive value.

As an alternative solution, we could write

y = asin (bx + ¢) as y = asin [b(x + %)]

As before, we find a = 5 and b = 7r/2. Now since the graph has an x-intercept
at x = —1, we can consider this graph to be a horizontal shift of the graph of
y = 5sin [(7/2)x] to the left by 1 unit—that is, replace x with x + 1. Thus,
an equation is

T T T
= 5sin | —(x + = 5sin | —x + — |.
y SSln[z(x 1):|, or y 5s1n<2x 2) v

Many phenomena that occur in nature vary in a cyclic or rhythmic man-
ner. It is sometimes possible to represent such behavior by means of trigono-
metric functions, as illustrated in the next two examples.

EXAMPLE 11 Analyzing the process of breathing

The rhythmic process of breathing consists of alternating periods of inhaling
and exhaling. One complete cycle normally takes place every 5 seconds. If F(7)
denotes the air flow rate at time ¢ (in liters per second) and if the maximum
flow rate is 0.6 liter per second, find a formula of the form F(¢) = a sin bt that
fits this information.

SOLUTION  If F(r) = asin bt for some b > 0, then the period of F is 2/b.
In this application the period is 5 seconds, and hence

— =5, or b=—.

Since the maximum flow rate corresponds to the amplitude a of F, we let
a = 0.6. This gives us the formula

F(r) = 0.6 sin (?t) 7
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EXAMPLE 12 Approximating the number of hours of daylight in a day

The number of hours of daylight D(¢) at a particular time of the year can be
approximated by

K 21
= ——sin | — (1 — +
D(1) 5 sin |:365 (¢ 79):| 12

for ¢ in days and ¢ = 0 corresponding to January 1. The constant K determines
the total variation in day length and depends on the latitude of the locale.

(a) For Boston, K = 6. Sketch the graph of D for 0 =< r =< 365.
(b) When is the day length the longest? the shortest?

SOLUTION
(@) If K = 6, then K/2 = 3, and we may write D(¢) in the form

D) = f(¢) + 12,

. 29T
where f(t) = 3 sin [%(t — 79)].

We shall sketch the graph of f and then apply a vertical shift through a dis-
tance 12.

As in part (2) of the theorem on amplitudes, periods, and phase shifts, we
can obtain a f-interval containing exactly one cycle by solving the following
inequality:

2

365
0= t—79 =365 multiply by 365
2

0= (t—179) =27

Figure 13
g 9= = 444 add 79

A y (number of hours) _ ) o o
Hence, one sine wave occurs on the interval [79, 444]. Dividing this interval

y = D(1) into four equal parts, we obtain the following table of values, which indicates

15 1 e .
the familiar sine wave pattern of amplitude 3.
127 t 79 17025 261.5 35275 444
9 | f@® 0 3 0 -3 0
|
6T ! Ift=0,
31 y=f® !

3é5 f(0) = 3sin [%(—79)] ~ 3 sin (—1.36) = —2.9.

| 1 >
/ 79 170 262\ 353 /444 Since the period of f is 365, this implies that f(365) =~ —2.9.
3 t (days) The graph of f for the interval [0, 444] is sketched in Figure 13, with dif-

ferent scales on the axes and ¢ rounded off to the nearest day.

(continued)
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Applying a vertical shift of 12 units gives us the graph of D for
0 = ¢ = 365 shown in Figure 13.

(b) The longest day—that is, the largest value of D(t)—occurs 170 days after
January 1. Except for leap year, this corresponds to June 20. The shortest day
occurs 353 days after January 1, or December 20.

6.5

Exercises

/

1 Find the amplitude and the period and sketch the graph of
the equation:

(a) y=4sinx (b) y = sin 4x

() y= i sin x (d) y= sin%x

(e) y=2 sinix (fy y= % sin 4x

() y = —4sinx (h) y = sin (—4x)

2 For equations analogous to those in (a)—(h) of Exercise 1
but involving the cosine, find the amplitude and the period
and sketch the graph.

3 Find the amplitude and the period and sketch the graph of
the equation:

(a) y=3cosx (b) y = cos 3x

(c) y= % cos x (d) y= COS%X

(e) y=2 cos%x (fy y= % cos 3x

(g) y= —3cosx (h) y = cos (—3x)

4 For equations analogous to those in (a)—(h) of Exercise 3
but involving the sine, find the amplitude and the period and
sketch the graph.

Exer. 5-40: Find the amplitude, the period, and the phase
shift and sketch the graph of the equation.

5 sin T 6 sin + T
= X — = X
y B y 4
T T
7 y=3si + — 8 v =2si _ 2z
y sin (x 5 ) y sin <x 3 )
T T
9y= +— 10 y = - —
y = cos <x > ) y = cos <x 3 )

T
1 y=4cos(x——> 12
4
13 y=sin(2x —m + 1 14
15 y=—-cos Bx+m) —2 16
17 y = —2sin 3x — m) 18
. 1 T
19 y=sin|—x — — 20
2 3
21 y = 6 sin mx 22
ar
23y=2cos?x 24
|
25y=3s1n277x 26
27 y = 5sin (3x—g) 28
1 T
29 y=3 —x - — 30
y cos<2x 4)
31 5 Lev ™) 2
= —=5c¢cos | —x + —
Y 3776
33 y =3 cos (mx + 4m) 34
o a
35 y=—V2sin|—x——
y sm<2x 4)
a aa
36 y=1V3 —x ==
y cos<4x 2)
37 y=—2sin2x — ) +3 38
39 y=5cos 2x +2m +2 40

T
=3 +—
y cos(x 6)

—sin Bx + 7 — 1
y=cos (2x — @) + 2

y=3cos 3x — m)
. 1 N T
=gin | —x + —
Y 2T,
3 T
=3 cos —x
Y 2
y = 4 sin 37x
1 T

y=-—cos—x

2 2

—4cos<2x+1>

3
1

—2 sin —x+1

2 2

1 T

—4sin | —x - =

y sm<3x 3)

—2 sin Qmx + m

y =

y:

y=3cos (x +3m —2

y=—4sin(3x—m) — 3



Exer. 41-44: The graph of an equation is shown in the
figure. (a) Find the amplitude, period, and phase shift.
(b) Write the equation in the form y = a sin (bx + ¢) for
a>0,b > 0, and the least positive real number c.

41

42

43

44

ISIEE

45

46

47
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Electroencephalography Shown in the figure is an electro-
encephalogram of human brain waves during deep sleep. If
we use W = a sin (bt + ¢) to represent these waves, what
is the value of 5?

Exercise 45

WV N

I i i

===

=T

=S
I
===
= | |

N
&

2 (sec)

Intensity of daylight On a certain spring day with 12 hours
of daylight, the light intensity 7 takes on its largest value of
510 calories/cm? at midday. If r = 0 corresponds to sunrise,
find a formula I = a sin bt that fits this information.

Heart action The pumping action of the heart consists of
the systolic phase, in which blood rushes from the left ven-
tricle into the aorta, and the diastolic phase, during which
the heart muscle relaxes. The function whose graph is shown
in the figure is sometimes used to model one complete cycle
of this process. For a particular individual, the systolic phase
lasts }‘ second and has a maximum flow rate of 8 liters per
minute. Find a and b.

Exercise 47

AY (liters/min)

y = a sin bt /

Diastolic
phase

0.25

Systolic
phase

>

t (seconds)

48 Biorhythms The popular biorhythm theory uses the graphs

of three simple sine functions to make predictions about an
individual’s physical, emotional, and intellectual potential
for a particular day. The graphs are given by y = a sin bt

(continued)
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49

50

51

Additional Trigonometric

for ¢ in days, with # = 0 corresponding to birth and a = 1
denoting 100% potential.

(a) Find the value of b for the physical cycle, which has
a period of 23 days; for the emotional cycle (period
28 days); and for the intellectual cycle (period 33 days).

(b) Evaluate the biorhythm cycles for a person who has just
become 21 years of age and is exactly 7670 days old.

Tidal components The height of the tide at a particular point
on shore can be predicted by using seven trigonometric
functions (called tidal components) of the form

f@t) = acos (bt + ¢).

The principal lunar component may be approximated by

where ¢ is in hours and ¢t = 0 corresponds to midnight.
Sketch the graph of fif a = 0.5 m.

Tidal components Refer to Exercise 49. The principal solar
diurnal component may be approximated by

f() = a cos <zt — 7—7T>

Sketch the graph of fif a = 0.2 m.

Hours of daylight in Fairbanks If the formula for D(r) in
Example 12 is used for Fairbanks, Alaska, then K = 12.
Sketch the graph of D in this case for 0 = r = 365.

6.6

Graphs

52

Low temperature in Fairbanks Based on years of weather
data, the expected low temperature T (in °F) in Fairbanks,
Alaska, can be approximated by

2
T=36sin|——-(@—101)| + 14,
sin [365( ):|
where 7 is in days and ¢ = 0 corresponds to January 1.

(a) Sketch the graph of T for 0 = r < 365.

(b) Predict when the coldest day of the year will occur.

Exer. 53—-56: Scientists sometimes use the formula

f®) =asin (bt +c) +d

to simulate temperature variations during the day, with
time ¢ in hours, temperature f(¢) in °C, and ¢ = 0 corre-
sponding to midnight. Assume that f(¢) is decreasing at
midnight.

(a) Determine values of a, b, ¢, and d that fit the information.
(b) Sketch the graph of f for 0 = ¢ < 24.

53

54

55

56

The high temperature is 10°C, and the low temperature of
—10°C occurs at 4 AM.

The temperature at midnight is 15°C, and the high and low
temperatures are 20°C and 10°C.

The temperature varies between 10°C and 30°C, and the
average temperature of 20°C first occurs at 9 A.M.

The high temperature of 28°C occurs at 2 P.M., and the
average temperature of 20°C occurs 6 hours later.

Methods we developed in Section 6.5 for the sine and cosine can be applied to
the other four trigonometric functions; however, there are several differences.
Since the tangent, cotangent, secant, and cosecant functions have no largest
values, the notion of amplitude has no meaning. Moreover, we do not refer to
cycles. For some tangent and cotangent graphs, we begin by sketching the por-

tion between successive vertical asymptotes and then repeat that pattern to the

right and to the left.

The graph of y = a tan x for @ > 0 can be obtained by stretching or com-
pressing the graph of y = tan x. If a < 0, then we also use a reflection about
the x-axis. Since the tangent function has period r, it is sufficient to sketch the
branch between the two successive vertical asymptotes x = —a/2 and
x = /2. The same pattern occurs to the right and to the left, as in the next

example.
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EXAMPLE 1 Sketching the graph of an equation involving tan x

Sketch the graph of the equation:
@) y=2tanx (b) yZ%tanx

SOLUTION  We begin by sketching the graph of one branch of y = tan x, as
shown in red in Figures 1 and 2, between the vertical asymptotes x = — /2
and x = 7/2.

(a) Fory = 2 tan x, we multiply the y-coordinate of each point by 2 and then

extend the resulting branch to the right and left, as shown in Figure 1.

Figurel y = 2tanx
AY

=Y

=2

(b) Fory = %tan x, we multiply the y-coordinates by %, obtaining the sketch
in Figure 2.

Figure2 y = %tan X
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The method used in Example 1 can be applied to other functions. Thus, to
sketch the graph of y = 3 sec x, we could first sketch the graph of one branch
of y = sec x and then multiply the y-coordinate of each point by 3.

The next theorem is an analogue of the theorem on amplitudes, periods,
and phase shifts stated in Section 6.5 for the sine and cosine functions.

Theorem on the Graph
of y = atan (bx + ¢)

If y = atan (bx + c) for nonzero real numbers a and b, then

T

|b]

(2) successive vertical asymptotes for the graph of one branch may be
found by solving the inequality

(1) the period is and the phase shift is —%;

T et e<=
) X @ ) 0

Figure 3

ltan + il
= — X _
) 4

EXAMPLE 2 Sketching the graph of an equation
of the form y = a tan (bx + ¢)

4

SOLUTION  The equation has the form given in the preceding theorem with
a= %, b =1, and ¢ = w/4. Hence, by part (1), the period is given by
w/|b| = w/1 = .

As in part (2), to find successive vertical asymptotes we solve the follow-
ing inequality:

1
Find the period and sketch the graph of y = Etan (x + 1)

T i T
—— =x+—=—
2 4 2
3 T T
—_— =X = — subtract —
4 4

Because a = %, the graph of the equation on the interval [ —37/4, 7r/4] has the
shape of the graph of y = % tan x (see Figure 2). Sketching that branch and ex-
tending it to the right and left gives us Figure 3.

Note that since ¢ = 7/4 and b = 1, the phase shift is —c/b = — /4.
Hence, the graph can also be obtained by shifting the graph of y = %tan X in
Figure 2 to the left a distance /4.

If y = a cot (bx + c¢), we have a situation similar to that stated in the pre-
vious theorem. The only difference is part (2). Since successive vertical
asymptotes for the graph of y = cotx are x = 0 and x = 7 (see Figure 19 in
Section 6.3), we obtain successive vertical asymptotes for the graph of one
branch of y = a cot (bx + ¢) by solving the inequality

0<bx+c<am



Figure 4

y=cot<

w
2 R
- 7)
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EXAMPLE 3 Sketching the graph of an equation
of the form y = a cot (bx + ¢)

Find the period and sketch the graph of y = cot <2x - g)
SOLUTION  Using the usual notation, we see that ¢ = 1, b = 2, and
¢ = —r/2. The period is 7/|b| = 7/2. Hence, the graph repeats itself in in-
tervals of length 7/2.

As in the discussion preceding this example, to find two successive verti-
cal asymptotes for the graph of one branch we solve the inequality:

T

0=2x——=

X 5 T

3

lgzx 5_77 addi
2 2 2
T 37
— = Xx = — divide by 2
4 4

Since a is positive, we sketch a cotangent-shaped branch on the interval
[7/4, 37/4] and then repeat it to the right and left in intervals of length /2,
as shown in Figure 4. 7/

Graphs involving the secant and cosecant functions can be obtained by
using methods similar to those for the tangent and cotangent or by taking re-
ciprocals of corresponding graphs of the cosine and sine functions.

EXAMPLE 4 Sketching the graph of an equation
of the form y = a sec (bx + ¢)

Sketch the graph of the equation:

(a)y=sec<x—%> (b)y=2sec<x—%>

SOLUTION

(a) The graph of y = sec x is sketched (without asymptotes) in red in
Figure 5 on the next page. The graph of y = cos x is sketched in black; notice
that the asymptotes of y = sec x correspond to the zeros of y = cos x. We can

obtain the graph of y = sec <x - %) by shifting the graph of y = sec x to

the right a distance /4, as shown in blue in Figure 5.

(b) We can sketch this graph by multiplying the y-coordinates of the graph in

part (a) by 2. This gives us Figure 6 on the next page.
(continued)
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Figure5 y = sec <x —

T
Figure6 y = 2 sec (x - ?>

. X
7/
EXAMPLE 5 Sketching the graph of an equation
of the form y = a csc (bx + ¢)
Sketch the graph of y = csc (2x + ).
SOLUTION  Since csc § = 1/sin 6, we may write the given equation as
B 1

Figure 7 Y Sin Q2x+ @’

y =csc 2x + )

A

w4

«Y

Thus, we may obtain the graph of y = csc (2x + #) by finding the graph
of y = sin (2x + #) and then taking the reciprocal of the y-coordinate of
each point. Using a = 1,b = 2, and ¢ = m, we see that the amplitude of
y = sin (2x 4+ @) is 1 and the period is 27/|b| = 27/2 = . To find an in-
terval containing one cycle, we solve the inequality

0=2x+ w27

—m = 2x =
T _ _7
-—— = Xx =—.
2 2

This leads to the graph in red in Figure 7. Taking reciprocals gives us the graph
of y = csc (2x + 77) shown in blue in the figure. Note that the zeros of the sine
curve correspond to the asymptotes of the cosecant graph. 7/
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The next example involves the absolute value of a trigonometric function.

EXAMPLE 6 Sketching the graph of an equation involving an absolute value
Sketch the graph of y = |cos x| + 1.

SOLUTION  We shall sketch the graph in three stages. First, we sketch the
graph of y = cos x, as in Figure 8(a).
Next, we obtain the graph of y = |cos x| by reflecting the negative
y-coordinates in Figure 8(a) through the x-axis. This gives us Figure 8(b).
Finally, we vertically shift the graph in (b) upward 1 unit to obtain
Figure 8(c).

Figure 8
(a) (b) (c)
y
y = COS X

We have used three separate graphs for clarity. In practice, we could sketch
Figure 9 the graphs successively on one coordinate plane. 7/
AY . o . . :
(x1, g(xp) + h(x))) Mathematical applications often involve a function f that is a sum of two
or more other functions. To illustrate, suppose

fx) = gx) + h(x),

where f, g, and & have the same domain D. A technique known as addition of
y-coordinates is sometimes used to sketch the graph of f. The method is illus-
trated in Figure 9, where for each x;, the y-coordinate f(x,) of a point on the
graph of fis the sum g(x;) + h(x,) of the y-coordinates of points on the graphs
of g and h. The graph of fis obtained by graphically adding a sufficient num-
ber of such y-coordinates.

It is sometimes useful to compare the graph of a sum of functions with the
individual functions, as illustrated in the next example.

EXAMPLE 7 Sketching the graph of a sum of two trigonometric functions

Sketch the graph of y, = cosx,y, = sinx, and y; = cos x + sinx on the
same coordinate plane for 0 = x = 3.

SOLUTION  Note that the graph of y; in Figure 10 intersects the graph of y,
when y, = 0, and the graph of y, when y; = 0. The x-intercepts for y; corre-
spond to the solutions of y, = —y,. Finally, we see that the maximum and
minimum values of y; occur when y; = y, (that is, when x = 7/4, 57/4, and
91r/4). These y-values are

V2/2+V2/2=V2 and  —-V2/2+(-V2/2)=-V2. /
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Figure 11

y=27"

=Y

The graph of an equation of the form
y = f(x) sin (ax + b) or y = f(x) cos (ax + b),
where f'is a function and a and b are real numbers, is called a damped sine
wave or damped cosine wave, respectively, and f(x) is called the damping
factor. The next example illustrates a method for graphing such equations.
EXAMPLE 8 Sketching the graph of a damped sine wave
Sketch the graph of fif f(x) = 27 sin x.

SOLUTION  We first examine the absolute value of f:

| f(x)| = |27*sinx|  absolute value of both sides
= [2|lsinx| |ab| = |a]}p
=271 |sinx| =1
| fo)] =27 [27] = 27*since 27 > 0
27 =flo) =27 x| =a<c=>—-a=x=a

The last inequality implies that the graph of f lies between the graphs of
the equations y = —27* and y = 27*. The graph of f will coincide with
one of these graphs if |sin x| = 1—that is, if x = (7/2) + 7n for some inte-
ger n.

- o
Since 27* > 0, the x-intercepts on the graph of f occur at sin x = 0—that
T is, at x = 7rn. Because there are an infinite number of x-intercepts, this is
T an example of a function that intersects its horizontal asymptote an infinite
— 9 T number of times. With this information, we obtain the sketch shown in
Y Figure 11. 7/
The damping factor in Example 8 is 27*. By using different damping fac-
tors, we can obtain other compressed or expanded variations of sine waves.
The analysis of such graphs is important in physics and engineering.
6.6 Exercises
Exer. 1-52: Find the period and sketch the graph of the o -
equation. Show the asymptotes. 9 y=tan|x— — 10 y=tan|x+ =
1 y=4tanx %tanx
11 y = tan 2x 12 y=tan%x
3 y=3cotx %cotx
. 13 y = tan ‘]-‘x 14 y = tan 4x
5y=2cscx 5 CSC X
™ 1 ™
7 y=3secx 8y=isecx 15y—2tan<2x+?> 16y—?tan<2x—?>
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_ 1
y = csc 3x

y =2 csc (2x+g>

__t L™ sy—4 1 =
y g ese |7+ y cse | Sx — =

44 y = csc 3x

46 y = —5] csc (2x — m)

y = tan —x 50 y = cot mx

y = csc 27x 52 y = sec %x

Find an equation using the cotangent function that has the
same graph as y = tan x.

Find an equation using the cosecant function that has the
same graph as y = sec x.

Exer. 55-60: Use the graph of a trigonometric function
to aid in sketching the graph of the equation without plot-
ting points.

55

57

59

y = |sin x| 56 y = |cos x|
y = |sinx| + 2 58 y =|cos x| — 3
y = —|cos x| + 1 60 y = —|sin x| — 2

Exer. 61-66: Sketch the graph of the equation.

61

63

65

67

y=x+ cosx 62 y=x — sinx

y =27"cos x 64 y = e*sinx

y = |x] sin x 66 y = |x| cos x

Radio signalintensity Radio stations often have more than
one broadcasting tower because federal guidelines do not
usually permit a radio station to broadcast its signal in all di-
rections with equal power. Since radio waves can travel over
long distances, it is important to control their directional pat-
terns so that radio stations do not interfere with one another.
Suppose that a radio station has two broadcasting towers
located along a north-south line, as shown in the figure. If
the radio station is broadcasting at a wavelength A and the
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distance between the two radio towers is equal to %)\, then 68 Radio signalintensity Refer to Exercise 67. Determine the
the intensity / of the signal in the direction 6 is given by directions in which / has maximum or minimum values.

1= %10[1 + cos (7 sin 6)],

69 Earth’s magnetic field The strength of Earth’s magnetic
field varies with the depth below the surface. The strength

where I, is the maximum intensity. Approximate / in terms at depth z and time 7 can sometimes be approximated using

of I, for each 6.

the damped sine wave

(a) 6=0 (b) 0= /3 () 0= /7

Exercise 67

6.7
Applied Problems

S = Ayge * sin (kt — az),
where Ay, «, and k are constants.
(a) What is the damping factor?
(b) Find the phase shift at depth z,.

(c) At what depth is the amplitude of the wave one-half the
amplitude of the surface strength?

Trigonometry was developed to help solve problems involving angles and
lengths of sides of triangles. Problems of that type are no longer the most im-
portant applications; however, questions about triangles still arise in physical
situations. When considering such questions in this section, we shall restrict
our discussion to right triangles. Triangles that do not contain a right angle will
be considered in Chapter 8.

We shall often use the following notation. The vertices of a triangle will
be denoted by A, B, and C; the angles at A, B, and C will be denoted by «, 3,
and v, respectively; and the lengths of the sides opposite these angles by a, b,
and ¢, respectively. The triangle itself will be referred to as triangle ABC (or
denoted AABC). If a triangle is a right triangle and if one of the acute
angles and a side are known or if two sides are given, then we may find the
remaining parts by using the formulas in Section 6.2 that express the trigono-
metric functions as ratios of sides of a triangle. We can refer to the process of
finding the remaining parts as solving the triangle.



Figure 1

Homework Helper

Organizing your work in a table
makes it easy to see what parts remain
to be found. Here are some snapshots
of what a typical table might look like

Jfor Example 1.

After finding S:

Opposite sides

Opposite sides

Opposite sides

Angles
a = 34°
B = 56°
v = 90°
After finding a:
Angles
a = 34°
B = 56°
v = 90°
After finding c:
Angles
a = 34°
B = 56°
v = 90°

6.7 Applied Problems 421

In all examples it is assumed that you know how to find trigonometric
function values and angles by using either a calculator or results about spe-
cial angles.

EXAMPLE 1 Solving a right triangle

Solve AABC, given y = 90°, a = 34°,and b = 10.5.

SOLUTION  Since the sum of the three interior angles in a triangle is 180°,
we have a + B + y = 180°. Solving for the unknown angle 8 gives us

B =180° — a — vy = 180° — 34° — 90° = 56°.
Referring to Figure 1, we obtain

a
tan 34° = — _ opp
10.5 tan a adj

(10.5) tan 34° = 7.1.  solve for a; approximate

a

To find side ¢, we can use either the cosine or the secant function, as fol-
lows in (1) or (2), respectively:

10.5 :
(1) cos34° = — cos a = adj
¢ hyp
10.5 .
c= 30 =~ 12.7 solve for ¢; approximate
cos
¢ h
2) sec34° = —— S _ P
(2) 105 sec a adj

(10.5) sec 34° = 12.7  solve for c; approximate V4

o
Il

As illustrated in Example 1, when working with triangles, we usually
round off answers. One reason for doing so is that in most applications the
lengths of sides of triangles and measures of angles are found by mechanical
devices and hence are only approximations to the exact values. Consequently,
a number such as 10.5 in Example 1 is assumed to have been rounded off to
the nearest tenth. We cannot expect more accuracy in the calculated values for
the remaining sides, and therefore they should also be rounded off to the near-
est tenth.

In finding angles, answers should be rounded off as indicated in the fol-
lowing table.

Number of significant Round off degree measure

figures for sides of angles to the nearest
2 1°
3 0.1°, or 10’

4 0.01° or 1’
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Figure 2
B
c B 123
A °C
31.6
Figure 3

Observer

-

~~"\ Angle of elevation

Angle of
depression

Justification of this table requires a careful analysis of problems that involve
approximate data.

EXAMPLE 2 Solving a right triangle
Solve AABC, given y = 90°,a = 12.3, and b = 31.6.
SOLUTION  Referring to the triangle illustrated in Figure 2 gives us

12.3

tan @ = ——.
ME=306

Since the sides are given with three significant figures, the rule stated in the
preceding table tells us that « should be rounded off to the nearest 0.1°, or the
nearest multiple of 10". Using the degree mode on a calculator, we have

12.3
a = tan”! TN 21.3° or, equivalently, a = 21°20".

Since a and B are complementary angles,
B =90°— a=90°— 21.3° = 68.7°.

The only remaining part to find is c. We could use several relationships in-
volving c¢ to determine its value. Among these are

. c
cosa = —, sec B =—, and at + b= 2.
c k 12.3
Whenever possible, it is best to use a relationship that involves only given in-
formation, since it doesn’t depend on any previously calculated value. Hence,
with a = 12.3 and b = 31.6, we have

c=Va + b =V(123)? + (31.6)> = V1149.85 = 33.9. 7/

As illustrated in Figure 3, if an observer at point X sights an object, then
the angle that the line of sight makes with the horizontal line / is the angle of
elevation of the object, if the object is above the horizontal line, or the angle
of depression of the object, if the object is below the horizontal line. We use
this terminology in the next two examples.

EXAMPLE 3 Using an angle of elevation

From a point on level ground 135 feet from the base of a tower, the angle of
elevation of the top of the tower is 57°20'. Approximate the height of
the tower.
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SOLUTION  If we let d denote the height of the tower, then the given facts
are represented by the triangle in Figure 4. Referring to the figure, we obtain

oy 4 ony _ OPP
tan 57°20 =135 tan 57°20 _adj

d = 135tan 57°20" = 211.  solve for d; approximate

The tower is approximately 211 feet high.

Figure 4

EXAMPLE 4 Using angles of depression

From the top of a building that overlooks an ocean, an observer watches a boat
sailing directly toward the building. If the observer is 100 feet above sea level
and if the angle of depression of the boat changes from 25° to 40° during the
period of observation, approximate the distance that the boat travels.

SOLUTION  Asin Figure 5, let A and B be the positions of the boat that cor-
respond to the 25° and 40° angles, respectively. Suppose that the observer is at
point D and that C is the point 100 feet directly below. Let d denote the dis-
tance the boat travels, and let k denote the distance from B to C. If « and 8

Figure 5
D
___n_;_n_n \\\\\ 25°

0B E E S~
0 EE
HEE E \\ S 400

100" |m = 5 & N S~
0 EE N ~
0 EE S~
0 EE ~
0 EE ﬂ AN al~

(continued)
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Note that d = AC — BC, and if we
use tan instead of cot, we get the
equivalent equation

100 100

d= .
tan 25°  tan 40°

denote angles DAC and DBC, respectively, then it follows from geometry (al-
ternate interior angles) that « = 25° and 8 = 40°.

From triangle BCD:
k adi
tB = cot40° = — _ad
cot B = co 100 cot B opp
k = 100 cot 40°  solve for k
From triangle DAC:
d+k :
cot @ = cot 25° = —— cot o = 240
100 opp
d + k = 100 cot 25° multiply by led
d = 100 cot 25° — k solve for d
= 100 cot 25° — 100 cot 40° &k = 100 cot 40°
= 100(cot 25° — cot 40°) factor out 100

~ 100(2.145 — 1.192) = 95  approximate

Hence, the boat travels approximately 95 feet. /

In certain navigation or surveying problems, the direction, or bearing,
from a point P to a point Q is specified by stating the acute angle that segment
PQ makes with the north-south line through P. We also state whether Q is
north or south and east or west of P. Figure 6 illustrates four possibilities. The
bearing from P to Q, is 25° east of north and is denoted by N25°E. We also
refer to the direction N25°E, meaning the direction from P to Q,. The bear-
ings from P to Q,, to Qs, and to Q, are represented in a similar manner in the
figure. Note that when this notation is used for bearings or directions, N or S
always appears to the left of the angle and W or E to the right.

Figure 6
N
N25°E
0,
25°
N70°W
70°
0, A
W E
55°
40° 0,
Q3 S55°E
S40°W
S




Figure 7 N
0
R
40°
P ) 300°
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In air navigation, directions and bearings are specified by measuring from
the north in a clockwise direction. In this case, a positive measure is assigned
to the angle instead of the negative measure to which we are accustomed for
clockwise rotations. Referring to Figure 7, we see that the direction of PQ is
40° and the direction of PR is 300°.

EXAMPLE 5 Using bearings

Two ships leave port at the same time, one ship sailing in the direction N23°E at
a speed of 11 mi/hr and the second ship sailing in the direction S67°E at
15 mi/hr. Approximate the bearing from the second ship to the first, one hour
later.

SOLUTION  The sketch in Figure 8 indicates the positions of the first and
second ships at points A and B, respectively, after one hour. Point C represents
the port. We wish to find the bearing from B to A. Note that

LACB = 180° — 23° — 67° = 90°,
and hence triangle ACB is a right triangle. Thus,

11 __opp
tan B = 15 tan B = adj
11

B = tan~' 5 = 36°.  solve for B; approximate

We have rounded 3 to the nearest degree because the sides of the triangles are
given with two significant figures.
Referring to Figure 9, we obtain the following:

£CBD = 90° — £LBCD = 90° — 67° = 23°
LABD = LABC + LCBD = 36° + 23° = 59°
0 =90° — LABD = 90° — 59° = 31°
Thus, the bearing from B to A is approximately N31°W. /

Trigonometric functions are useful in the investigation of vibratory or os-
cillatory motion, such as the motion of a particle in a vibrating guitar string or
a spring that has been compressed or elongated and then released to oscillate
back and forth. The fundamental type of particle displacement in these illus-
trations is harmonic motion.

Definition of
Simple Harmonic Motion

A point moving on a coordinate line is in simple harmonic motion if its
distance d from the origin at time ¢ is given by either

d = a cos wt or d = a sin wt,

where a and w are constants, with w > 0.
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Figure 10

In the preceding definition, the amplitude of the motion is the maximum
displacement |a| of the point from the origin. The period is the time 27/ w
required for one complete oscillation. The reciprocal of the period, w/(27), is
the number of oscillations per unit of time and is called the frequency.

A physical interpretation of simple harmonic motion can be obtained by
considering a spring with an attached weight that is oscillating vertically rela-
tive to a coordinate line, as illustrated in Figure 10. The number d represents
the coordinate of a fixed point Q in the weight, and we assume that the ampli-
tude a of the motion is constant. In this case no frictional force is retarding the
motion. If friction is present, then the amplitude decreases with time, and the
motion is said to be damped.

EXAMPLE 6 Describing harmonic motion

Suppose that the oscillation of the weight shown in Figure 10 is given by

T
d =10 —t],
cos<6>

with ¢ measured in seconds and d in centimeters. Discuss the motion of
the weight.

SOLUTION By definition, the motion is simple harmonic with amplitude
a = 10 cm. Since w = 7/6, we obtain the following:
27w 2w

eriod = — = —— =12
pert o 76
Thus, in 12 seconds the weight makes one complete oscillation. The frequency
is ﬁ, which means that one-twelfth of an oscillation takes place each second.
The following table indicates the position of Q at various times.

t 0 1 2 13| 4 5 6
fup 0 T |m|m 2" ks
6 6 3023 6 7
T V3 1 1 V3
—t 1 = — _—— ——= -1
c0s< ) > > 0 > 5
d 10(5V3=87|5 |0 | =5|-5V3=-87|-10

The initial position of Q is 10 centimeters above the origin O. It moves
downward, gaining speed until it reaches O. Note that Q travels approximately
10 — 8.7 = 1.3 cm during the first second, 8.7 — 5 = 3.7 cm during the next
second, and 5 — 0 = 5 cm during the third second. It then slows down until it
reaches a point 10 centimeters below O at the end of 6 seconds. The direction
of motion is then reversed, and the weight moves upward, gaining speed until
it reaches O. Once it reaches O, it slows down until it returns to its original po-
sition at the end of 12 seconds. The direction of motion is then reversed again,
and the same pattern is repeated indefinitely. 7/
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Exer. 1-8: Given the indicated parts of triangle ABC with
y = 90°, find the exact values of the remaining parts.

1a=30, b=20 2 B=45°, b=235
3 B=45, =230 La=60°, c=6
5a=35, b=5 6 a=4\V3 c=38

7b=5V3 c=10V3 8b=7V2 c=14
Exer. 9-16: Given the indicated parts of triangle ABC with

¥ = 90°, approximate the remaining parts.

9 a=37°, b=24 10 B = 64°20", a = 20.1
1 B=71°51", b=2400 12 «=31°10", a =510
13 a = 25, b =45 14 a = 31, b=9.0
15 ¢ =538, b=21 16 a = 042, c = 0.68

Exer. 17-24: Given the indicated parts of triangle ABC with
¥ = 90°, express the third part in terms of the first two.

17 a,c; b 18 B,c; b
19 B,b; a 20 a,b; a
21 a,a; ¢ 22 B,a; c
23 a,c; b 24 a, b; c

25 Height of a kite A person flying a kite holds the string
4 feet above ground level. The string of the kite is taut and
makes an angle of 60° with the horizontal (see the figure).
Approximate the height of the kite above level ground if
500 feet of string is payed out.

Exercise 25

26 Surveying From a point 15 meters above level ground, a
surveyor measures the angle of depression of an object on
the ground at 68°. Approximate the distance from the object
to the point on the ground directly beneath the surveyor.

27 Airplane landing A pilot, flying at an altitude of 5000 feet,
wishes to approach the numbers on a runway at an angle
of 10°. Approximate, to the nearest 100 feet, the distance
from the airplane to the numbers at the beginning of the
descent.

28 Radio antenna A guy wire is attached to the top of a
radio antenna and to a point on horizontal ground that is
40.0 meters from the base of the antenna. If the wire makes
an angle of 58°20" with the ground, approximate the length
of the wire.

29 Surveying To find the distance d between two points P and
QO on opposite shores of a lake, a surveyor locates a point R
that is 50.0 meters from P such that RP is perpendicular to
PQ, as shown in the figure. Next, using a transit, the sur-
veyor measures angle PRQ as 72°40’. Find d.

Exercise 29

30 Meteorological calculations To measure the height & of a
cloud cover, a meteorology student directs a spotlight verti-
cally upward from the ground. From a point P on level
ground that is d meters from the spotlight, the angle of ele-
vation 6 of the light image on the clouds is then measured
(see the figure on the next page).

(a) Express h in terms of d and .
(b) Approximate & if d = 1000 m and 6§ = 59°.
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31

32

33

Exercise 30

Altitude of a rocket A rocket is fired at sea level and climbs
at a constant angle of 75° through a distance of 10,000 feet.
Approximate its altitude to the nearest foot.

Airplane takeoff An airplane takes off at a 10° angle and
travels at the rate of 250 ft/sec. Approximately how long
does it take the airplane to reach an altitude of 15,000 feet?

Designing a drawbridge A drawbridge is 150 feet long
when stretched across a river. As shown in the figure, the
two sections of the bridge can be rotated upward through an
angle of 35°.

(a) If the water level is 15 feet below the closed bridge,
find the distance d between the end of a section and the
water level when the bridge is fully open.

(b) Approximately how far apart are the ends of the two
sections when the bridge is fully opened, as shown in
the figure?

Exercise 33

34 Designing a water slide Shown in the figure is part of a de-

35

36

37

sign for a water slide. Find the total length of the slide to the
nearest foot.

Exercise 34

Sun’s elevation Approximate the angle of elevation « of
the sun if a person 5.0 feet tall casts a shadow 4.0 feet long
on level ground (see the figure).

Exercise 35

Constructing a ramp A builder wishes to construct a ramp
24 feet long that rises to a height of 5.0 feet above level
ground. Approximate the angle that the ramp should make
with the horizontal.

Video game Shown in the figure is the screen for a simple
video arcade game in which ducks move from A to B at
the rate of 7 cm/sec. Bullets fired from point O travel
25 cm/sec. If a player shoots as soon as a duck appears at
A, at which angle ¢ should the gun be aimed in order to
score a direct hit?
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Exercise 37 Venus occurs when Earth is at its minimum distance D,
from the sun and Venus is at its maximum distance D, from
the sun. If D, = 91,500,000 mi and D, = 68,000,000 mi,
approximate the maximum elongation 6,,, of Venus. As-
sume that the orbit of Venus is circular.

Exercise 40

== Venus
C e,

- -
O
=

38 Conveyor belt A conveyor belt 9 meters long can be hy- - Earth |
draulically rotated up to an angle of 40° to unload cargo . . L
from airplanes (see the figure). ° o . a . : } . o

(a) Find, to the nearest degree, the angle through which the

conveyor belt should be rotated up to reach a door that 41 The Pentagon’s ground area The Pentagon is the largest

is 4 meters above the platform supporting the belt. office building in the world in terms of ground area. The

perimeter of the building has the shape of a regular penta-

(b) Approximate the maximum height above the platform gon with each side of length 921 feet. Find the area en-
that the belt can reach. closed by the perimeter of the building.

Exercise 38

42 A regular octagon is inscribed in a circle of radius 12.0 cen-
timeters. Approximate the perimeter of the octagon.

43 A rectangular box has dimensions 8" X 6" X 4". Approxi-
mate, to the nearest tenth of a degree, the angle 6 formed by
a diagonal of the base and the diagonal of the box, as shown
in the figure.

Exercise 43

4![
39 Tallest structure The tallest man-made structure in the - S //J/
world is a television transmitting tower located near \ \/>
Mayville, North Dakota. From a distance of 1 mile on level 8" 6"
ground, its angle of elevation is 21°20'24". Determine its \// S~
height to the nearest foot.
40 Elongation of Venus The elongation of the planet Venus is 44 Volume of a conical cup A conical paper cup has a radius of
defined to be the angle 6 determined by the sun, Earth, and 2 inches. Approximate, to the nearest degree, the angle 3 (see

Venus, as shown in the figure. Maximum elongation of the figure) so that the cone will have a volume of 20 in’.
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45

46

47

Exercise 44 VS
l l
I

Height of a tower From a point P on level ground, the angle
of elevation of the top of a tower is 26°50’. From a point
25.0 meters closer to the tower and on the same line with P
and the base of the tower, the angle of elevation of the top
is 53°30". Approximate the height of the tower.

Ladder calculations A ladder 20 feet long leans against the
side of a building, and the angle between the ladder and the
building is 22°.

(a) Approximate the distance from the bottom of the lad-
der to the building.

(b) If the distance from the bottom of the ladder to the
building is increased by 3.0 feet, approximately how
far does the top of the ladder move down the building?

Ascent of a hot-air balloon As a hot-air balloon rises verti-
cally, its angle of elevation from a point P on level ground
110 kilometers from the point Q directly underneath the bal-
loon changes from 19°20" to 31°50" (see the figure). Ap-
proximately how far does the balloon rise during this period?

Exercise 47

48 Height ofa building From a point A that is 8.20 meters above

level ground, the angle of elevation of the top of a build-
ing is 31°20" and the angle of depression of the base of the
building is 12°50". Approximate the height of the building.

49 Radius of Earth A spacelab circles Earth at an altitude of

380 miles. When an astronaut views the horizon of Earth,
the angle 6 shown in the figure is 65.8°. Use this informa-
tion to estimate the radius of Earth.

Exercise 49

@A

380 mi |

50 Lengthofanantenna A CB antenna is located on the top of

a garage that is 16 feet tall. From a point on level ground
that is 100 feet from a point directly below the antenna, the
antenna subtends an angle of 12°, as shown in the figure.
Approximate the length of the antenna.

Exercise 50

100’ '

51 Speed of an airplane An airplane flying at an altitude of

10,000 feet passes directly over a fixed object on the
ground. One minute later, the angle of depression of the ob-
ject is 42°. Approximate the speed of the airplane to the
nearest mile per hour.
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53

Height of a mountain A motorist, traveling along a level
highway at a speed of 60 km/hr directly toward a mountain,
observes that between 1:00 P.M. and 1:10 P.M. the angle of
elevation of the top of the mountain changes from 10° to 70°.
Approximate the height of the mountain.

Communications satellite Shown in the left part of the fig-
ure is a communications satellite with an equatorial orbit—
that is, a nearly circular orbit in the plane determined by
Earth’s equator. If the satellite circles Earth at an altitude of
a = 22,300 mi, its speed is the same as the rotational speed
of Earth; to an observer on the equator, the satellite appears
to be stationary—that is, its orbit is synchronous.

(a) Using R = 4000 mi for the radius of Earth, determine
the percentage of the equator that is within signal range
of such a satellite.

(b) As shown in the right part of the figure, three satellites
are equally spaced in equatorial synchronous orbits.
Use the value of 6 obtained in part (a) to explain why
all points on the equator are within signal range of at
least one of the three satellites.

Exercise 53

54 Communications satellite Refer to Exercise 53. Shown in

the figure is the area served by a communications satellite
circling a planet of radius R at an altitude a. The portion of
the planet’s surface within range of the satellite is a spheri-
cal cap of depth d and surface area A = 27Rd.

(a) Express d in terms of R and 6.

(b) Estimate the percentage of the planet’s surface that is
within signal range of a single satellite in equatorial
synchronous orbit.

55

56

57

58

59

60
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Exercise 54

Height of a kite Generalize Exercise 25 to the case where
the angle is «, the number of feet of string payed out is d,
and the end of the string is held c feet above the ground. Ex-
press the height % of the kite in terms of «, d, and c.

Surveying Generalize Exercise 26 to the case where the
point is d meters above level ground and the angle of de-
pression is «. Express the distance x in terms of d and «.

Height of a tower Generalize Exercise 45 to the case where
the first angle is «, the second angle is 8, and the distance
between the two points is d. Express the height # of the
tower in terms of d, «, and .

Generalize Exercise 42 to the case of an n-sided polygon
inscribed in a circle of radius r. Express the perimeter P in
terms of n and r.

Ascent of a hot-air balloon Generalize Exercise 47 to the
case where the distance from P to Q is d kilometers and the
angle of elevation changes from « to S.

Height of a building Generalize Exercise 48 to the case
where point A is d meters above ground and the angles of
elevation and depression are « and f3, respectively. Express
the height 4 of the building in terms of d, «, and 3.
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Exer. 61-62: Find the bearing from P to each of the
points A, B, C, and D.

61 N

40°

20°

62 N

15°

60\l p

80°

63 Ship’s bearings A ship leaves port at 1:00 P.M. and sails in
the direction N34°W at a rate of 24 mi/hr. Another ship
leaves port at 1:30 P.M. and sails in the direction N56°E at a
rate of 18 mi/hr.

(a) Approximately how far apart are the ships at 3:00 p.M.?

(b) What is the bearing, to the nearest degree, from the first
ship to the second?

64 Pinpointing a forest fire From an observation point A, a
forest ranger sights a fire in the direction S35°50’W (see the
figure). From a point B, 5 miles due west of A, another
ranger sights the same fire in the direction S54°10'E. Ap-

proximate, to the nearest tenth of a mile, the distance of the
fire from A.

Exercise 64

65 Airplane flight An airplane flying at a speed of 360 mi/hr
flies from a point A in the direction 137° for 30 minutes and
then flies in the direction 227° for 45 minutes. Approximate,
to the nearest mile, the distance from the airplane to A.

66 Airplane flight plan An airplane flying at a speed of
400 mi/hr flies from a point A in the direction 153° for
1 hour and then flies in the direction 63° for 1 hour.

(a) In what direction does the plane need to fly in order to
get back to point A?

(b) How long will it take to get back to point A?

Exer. 67-70: The formula specifies the position of a point P
that is moving harmonically on a vertical axis, where ¢ is in
seconds and d is in centimeters. Determine the amplitude,
period, and frequency, and describe the motion of the point
during one complete oscillation (starting at ¢ = 0).

1
68 d=—coszt

67 d = 10 sin 67t
sin 677 3 2

3 2
69 d:4cos§t 70 d=6sin§z

71 A point P in simple harmonic motion has a period of 3 sec-
onds and an amplitude of 5 centimeters. Express the motion
of P by means of an equation of the form d = a cos wt.
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A point P in simple harmonic motion has a frequency of
% oscillation per minute and an amplitude of 4 feet. Express
the motion of P by means of an equation of the form
d = a sin wt.

Tsunamis A tsunami is a tidal wave caused by an earthquake
beneath the sea. These waves can be more than 100 feet in
height and can travel at great speeds. Engineers sometimes
represent such waves by trigonometric expressions of the
form y = a cos bt and use these representations to estimate
the effectiveness of sea walls. Suppose that a wave has
height 7 = 50 ft and period 30 minutes and is traveling at
the rate of 180 ft/sec.

Exercise 73

v,

Sea
wall

74
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(a) Let (x, y) be a point on the wave represented in the
figure. Express y as a function of ¢ if y = 25 ft when
t=0.

(b) The wave length L is the distance between two succes-
sive crests of the wave. Approximate L in feet.

Some Hawaiian tsunamis For an interval of 45 minutes, the
tsunamis near Hawaii caused by the Chilean earthquake of

1960 could be modeled by the equation y = 8 sin %t,
where y is in feet and 7 is in minutes.
(a) Find the amplitude and period of the waves.

(b) If the distance from one crest of the wave to the next was
21 kilometers, what was the velocity of the wave? (Tidal
waves can have velocities of more than 700 km/hr in
deep sea water.)

Find the radian measure that corresponds to each degree
measure: 330°, 405°, —150°, 240°, 36°.

Find the degree measure that corresponds to each radian
97 2@ Iw 5 T

measure: —, ———, ——, 37, .
20 347" s

A central angle 6 is subtended by an arc 20 centimeters long
on a circle of radius 2 meters.

(a) Find the radian measure of 6.
(b) Find the area of the sector determined by 6.

(a) Find the length of the arc that subtends an angle of
measure 70° on a circle of diameter 15 centimeters.

(b) Find the area of the sector in part (a).

Angular speed of phonograph records Two types of phono-
graph records, LP albums and singles, have diameters of
12 inches and 7 inches, respectively. The album rotates at a

rate of 3351 rpm, and the single rotates at 45 rpm. Find the an-
gular speed (in radians per minute) of the album and of the
single.

Linear speed on phonograph records Using the information
in Exercise 5, find the linear speed (in ft/min) of a point on
the circumference of the album and of the single.

Exer. 7-8: Find the exact values of x and y.

7

8

60°
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Exer. 9-10: Use fundamental identities to write the first
expression in terms of the second, for any acute angle 6.

9 tan 6, sec 0 10 cot O, csc 0

Exer. 11-20: Verify the identity by transforming the left-
hand side into the right-hand side.

11 sin O (csc O — sin 6) = cos® 0
12 cos 0 (tan 6 + cot ) = csc 6

13 (cos? § — 1)(tan> 0+ 1) = 1 — sec® 0

sec 0 —cos 6 tan 0

14 =
tan 0 sec 0
1 + tan® 0
ISW:CSCZG
16sect9+csc(9_sin9+cos€
sec @ —csc & sin 6 — cos 0
cot 6 — 1 1 + sec 0
17 ——=cot 6 —— =c¢csc 0
1 —tan 6 tan 6 + sin 6
t —0) + cot (—0
19 an (76) + cot ( )I—CSCZH
tan 0
1 t (—0
20 cot ( )=csc0

csc (—0)  sec (-0

21 If 6 is an acute angle of a right triangle and if the adjacent
side and hypotenuse have lengths 4 and 7, respectively, find
the values of the trigonometric functions of 6.

22 Whenever possible, find the exact values of the trigonomet-
ric functions of #if #is in standard position and satisfies the
stated condition.

(a) The point (30, —40) is on the terminal side of 6.

(b) The terminal side of @ is in quadrant II and is parallel
to the line 2x + 3y + 6 = 0.

(c) The terminal side of 6 is on the negative y-axis.
23 Find the quadrant containing 6 if 6 is in standard position.
(a) sec # < 0 andsin 6 >0
(b) cot &> 0andcsc <0
(c) cos 6> 0andtan 6 <0

24 Find the exact values of the remaining trigonometric
functions if

(a) sin 0 = —% and cos 6 :%

3

(b) csc 0 = and cot 6 = 5

Exer. 25-26: P(¢) denotes the point on the unit circle U that
corresponds to the real number ¢.

25 Find the rectangular coordinates of P(7w), P(—5m/2),
P(9m/2), P(—3m/4), P(187), and P(7/6).

26 If P(7) has coordinates (—%, —g), find the coordinates of
P(t + 3m), P(t — ), P(—1), and P27 — ¢).

27 (a) Find the reference angle for each radian measure:
57 5w 97w

4 6 8

(b) Find the reference angle for each degree measure:
245°,137°, 892°.

28 Without the use of a calculator, find the exact values of the
trigonometric functions corresponding to each real number,
whenever possible.

@ 1"

(c) sin <—%T>

(F) csc 300°

@2 ®-2 ©o

29 Find the exact value.

(a) cos 225° (b) tan 150°

7
(e) cot T

4
d *
()sec3 1

30 If sin § = —0.7604 and sec 6 is positive, approximate 6 to
the nearest 0.1° for 0° = 6 < 360°.

31 If tan 6 = 2.7381, approximate 6 to the nearest 0.0001 ra-
dian for 0 = 0 < 2.

32 If sec 6 = 1.6403, approximate 6 to the nearest 0.01° for
0° = 0 < 360°.

Exer. 33-40: Find the amplitude and period and sketch the
graph of the equation.

33 y=5cosx 34y=§sinx
35y=%sin3x 36y=—%cos%x
37 y = —3cos 3x 38 y = 4 sin 2x

39 y =2 sin mx 40y=4cos%x—2



Exer. 41-44: The graph of an equation is shown in the
figure. (a) Find the amplitude and period. (b) Express
the equation in the form y = a sin bx or in the form
y = a cos bx.

41 y

42 y

Exer. 45-56: Sketch the graph of the equation.

2
45y=25in<x—?ﬂ>

aa o
47y=—4cos<x+g) 48y=500s<2x+?>
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1
49y=2tan<5x—7-r>
51 y = —4 cot <2x—£)

2
1 ™
53 y = sec Ex+7r 54 y = sec 2x—?

55 y = % — = 56 v = i .7
y=ese 20— y=ese|Jx+

Exer. 57-60: Given the indicated parts of triangle ABC with
¥ = 90°, approximate the remaining parts.

57 B=60° b =40 58 a = 54°40', b =220

50 y = —3 tan <2x +%>

1 T
52 y=2cot | —x + —
y co (2x 4)

59 a=62, b=25 60 a = 9.0, c =41

61 Airplane propeller The length of the largest airplane propeller
ever used was 22 feet 7.5 inches. The plane was powered
by four engines that turned the propeller at 545 revolutions
per minute.

(a) What was the angular speed of the propeller in radians
per second?

b) Approximately how fast (in mi/hr) did the tip of the
pp y p
propeller travel along the circle it generated?

62 The Eiffel Tower When the top of the Eiffel Tower is viewed
at a distance of 200 feet from the base, the angle of eleva-
tion is 79.2°. Estimate the height of the tower.

63 Lasers and velocities Lasers are used to accurately measure
velocities of objects. Laser light produces an oscillating
electromagnetic field E with a constant frequency f that can
be described by

E = E, cos 2mft).

If a laser beam is pointed at an object moving toward the laser,
light will be reflected toward the laser at a slightly higher
frequency, in much the same way as a train whistle sounds
higher when it is moving toward you. If Af is this change
in frequency and v is the object’s velocity, then the equation

can be used to determine v, where ¢ = 186,000 mi/sec is
the velocity of the light. Approximate the velocity v of an
object if Af = 10% and f = 10™.
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64 The Great Pyramid The Great Pyramid of Egypt is 147 meters

high, with a square base of side 230 meters (see the figure).
Approximate, to the nearest degree, the angle ¢ formed when
an observer stands at the midpoint of one of the sides and
views the apex of the pyramid.

Exercise 64

~

65 Venus When viewed from Earth over a period of time, the

planet Venus appears to move back and forth along a line
segment with the sun at its midpoint (see the figure). If ES
is approximately 92,900,000 miles, then the maximum ap-
parent distance of Venus from the sun occurs when angle
SEV is approximately 47°. Assume that the orbit of Venus is
circular and estimate the distance of Venus from the sun.

Exercise 65

Maximum
apparent
distance

Apparent
movement
of Venus

66 Surveying From a point 233 feet above level ground, a
surveyor measures the angle of depression of an object
on the ground as 17°. Approximate the distance from the
object to the point on the ground directly beneath the
surveyor.

67 Ladder calculations A ladder 16 feet long leans against the

side of a building, and the angle between the ladder and the
building is 25°.

68

69

70

(a) Approximate the distance from the bottom of the lad-
der to the building.

(b) If the distance from the bottom of the ladder to the
building is decreased by 1.5 feet, approximately how
far does the top of the ladder move up the building?

Constructing a conical cup A conical paper cup is con-
structed by removing a sector from a circle of radius
5 inches and attaching edge OA to OB (see the figure). Find
angle AOB so that the cup has a depth of 4 inches.

Exercise 68

Length of a tunnel A tunnel for a new highway is to be cut
through a mountain that is 260 feet high. At a distance of
200 feet from the base of the mountain, the angle of eleva-
tion is 36° (see the figure). From a distance of 150 feet on
the other side, the angle of elevation is 47°. Approximate the
length of the tunnel to the nearest foot.

Exercise 69

|
200’ !

Height of a skyscraper When a certain skyscraper is viewed
from the top of a building 50 feet tall, the angle of elevation
is 59° (see the figure). When viewed from the street next to
the shorter building, the angle of elevation is 62°.

(a) Approximately how far apart are the two structures?

(b) Approximate the height of the skyscraper to the nearest
tenth of a foot.
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Exercise 70

ﬁ

Height of a mountain When a mountaintop is viewed from
the point P shown in the figure, the angle of elevation is a.
From a point Q, which is d miles closer to the mountain, the
angle of elevation increases to .

(a) Show that the height % of the mountain is given by
_ d
cot @ — cot B
(b) If d = 2 mi, « = 15°, and B = 20°, approximate the
height of the mountain.

Exercise 71

72

Height of a building An observer of height % stands on an
incline at a distance d from the base of a building of height
T, as shown in the figure. The angle of elevation from the
observer to the top of the building is 6, and the incline
makes an angle of « with the horizontal.

(a) Express T in terms of &, d, a, and 6.

(b) f h =06 ft,d =50 ft, « = 15° and 6 = 31.4°, esti-
mate the height of the building.

73

74
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Exercise 72

Illuminance A spotlight with intensity 5000 candles is lo-
cated 15 feet above a stage. If the spotlight is rotated through
an angle 60 as shown in the figure, the illuminance E (in foot-
candles) in the lighted area of the stage is given by

5000 cos 0

s
S2

E

where s is the distance (in feet) that the light must travel.

(a) Find the illuminance if the spotlight is rotated through
an angle of 30°.

(b) The maximum illuminance occurs when 6 = 0°.
For what value of 0 is the illuminance one-half the
maximum value?

Exercise 73

Height of a mountain If a mountaintop is viewed from a
point P due south of the mountain, the angle of elevation is
« (see the figure). If viewed from a point Q that is d miles
east of P, the angle of elevation is S.

(a) Show that the height & of the mountain is given by

d sin « sin B

Vsin? a — sin? 8

h =

(b) If @ = 30°, B = 20° and d = 10 mi, approximate / to
the nearest hundredth of a mile.
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Exercise 74

75 Mounting a projection unit The manufacturer of a comput-
erized projection system recommends that a projection unit
be mounted on the ceiling as shown in the figure. The dis-
tance from the end of the mounting bracket to the center of
the screen is 85.5 inches, and the angle of depression is 30°.

(a) If the thickness of the screen is disregarded, how far
from the wall should the bracket be mounted?

(b) If the bracket is 18 inches long and the screen is 6 feet
high, determine the distance from the ceiling to the top
edge of the screen.

Exercise 75

76 Pyramid relationships A pyramid has a square base and
congruent triangular faces. Let 6 be the angle that the alti-
tude a of a triangular face makes with the altitude y of the
pyramid, and let x be the length of a side (see the figure).

(a) Express the total surface area S of the four faces in
terms of a and 6.

77

78

(b) The volume V of the pyramid equals one-third the area
of the base times the altitude. Express V in terms of
a and 0.

Exercise 76

Surveying a bluff A surveyor, using a transit, sights the
edge B of a bluff, as shown in the left part of the figure (not
drawn to scale). Because of the curvature of Earth, the true
elevation £ of the bluff is larger than that measured by the
surveyor. A cross-sectional schematic view of Earth is
shown in the right part of the figure.

(a) If s is the length of arc PQ and R is the distance from P
to the center C of Earth, express 4 in terms of R and s.

(b) If R = 4000 mi and s = 50 mi, estimate the elevation
of the bluff in feet.

Exercise 77

Earthquake response To simulate the response of a struc-
ture to an earthquake, an engineer must choose a shape for
the initial displacement of the beams in the building. When
the beam has length L feet and the maximum displacement
is a feet, the equation

cos —

=a—ua —X

Y 2L

has been used by engineers to estimate the displacement y
(see the figure). If a = 1 and L = 10, sketch the graph of
the equation for 0 = x = 10.



Exercise 78

79 Circadian rhythms The variation in body temperature is an

example of a circadian rhythm, a cycle of a biological process
that repeats itself approximately every 24 hours. Body tem-
perature is highest about 5 P.M. and lowest at 5 A.M. Let y
denote the body temperature (in °F), and let 7 = 0 correspond
to midnight. If the low and high body temperatures are

81

82
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(a) Sketch the graph of T'for 0 < ¢ < 12.

(b) Find the highest temperature of the year and the date on
which it occurs.

Water demand A reservoir supplies water to a community.
During the summer months, the demand D(¢) for water (in
ft’/day) is given by

D() = 2000 sin 9%; + 4000,

where 7 is time in days and r = 0 corresponds to the begin-
ning of summer.

(a) Sketch the graph of D for 0 = ¢t =< 90.
(b) When is the demand for water the greatest?

Bobbing cork A cork bobs up and down in a lake. The dis-
tance from the bottom of the lake to the center of the cork
at time ¢ = 0 is given by s(r) = 12 + cos 7t, where () is
in feet and 7 is in seconds.

98.3° and 98.9°, respectively, find an equation having the

formy = 98.6 + a sin (bt + c) that fits this information. (a) Describe the motion of the cork for 0 = ¢t = 2.

80 Temperature variation in Ottawa The annual variation
in temperature 7 (in °C) in Ottawa, Canada, may be ap-
proximated by

(6) = 15.8 sin [%(r - 3)] +5,

(b) During what time intervals is the cork rising?

where ¢ is the time in months and # = O corresponds to
January 1.

CHAPTER 6 DISCUSSION EXERCISES

1 Determine the number of solutions of the equation Exercise 2

cos x + cos 2x + cos 3x = .

2 Racetrack coordinates Shown in the figure is a circular
racetrack of diameter 2 kilometers. All races begin at S and
proceed in a counterclockwise direction. Approximate, to
four decimal places, the coordinates of the point at which
the following races end relative to a rectangular coordinate
system with origin at the center of the track and S on the
positive x-axis.

(a) A drag race of length 2 kilometers

(b) An endurance race of length 500 kilometers
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3 Racetrack coordinates Work Exercise 2 for the track shown (a) Find the angular speed w of the propeller in radians
in the figure, if the origin of the rectangular coordinate sys- per second.

tem is at the center of the track and S is on the negative y-axis. ) ) .
(b) The center of a 10-inch-diameter propeller is located

Exercise 3 18 inches below the surface of the water. Express the
<—-2km — depth D(1) = a cos (wt + ¢) + d of a point on the

\ edge of a propeller blade as a function of time 7, where

| t is in seconds. Assume that the point is initially at a

\

|

\

|

|

|

|

| .

\ / depth of 23 inches.
|

|

| I km 5 Discuss the relationships among periodic functions, one-to-
|

|

I

|

|

|
} one functions, and inverse functions. With these relationships
\ in mind, discuss what must happen for the trigonometric
} functions to have inverses.

4 Qutboard motor propeller A 90-horsepower outboard motor
at full throttle will rotate its propeller at 5000 revolutions
per minute.



